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Grid computing emerged as a framework for supporting complex operations over large

datasets, it enables the harnessing of large numbers of processors working in parallel to

solve computing problems that typically spread across various domains. We focus on the

problems of data management in a grid/cloud environment.

The broader context of designing a services oriented architecture (SOA) for information

integration is studied, identifying the main components for realizing this architecture. The

BioFederator is a web services-based data federation architecture for bioinformatics appli-

cations. Based on collaborations with bioinformatics researchers, several domain-specific

data federation challenges and needs are identified. The BioFederator addresses such chal-

lenges and provides an architecture that incorporates a series of utility services; these ad-

dress issues like automatic workflow composition, domain semantics, and the distributed

nature of the data. The design also incorporates a series of data-oriented services that facili-

tate the actual integration of data. Schema integration is a core problem in the BioFederator

context. Previous methods for schema integration rely on the exploration, implicit or ex-

plicit, of the multiple design choices that are possible for the integrated schema. Such

exploration relies heavily on user interaction; thus, it is time consuming and labor inten-

sive. Furthermore, previous methods have ignored the additional information that typically

results from the schema matching process, that is, the weights and in some cases the direc-

tions that are associated with the correspondences. We propose a more automatic approach

to schema integration that is based on the use of directed and weighted correspondences
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between the concepts that appear in the source schemas. A key component of our approach

is a ranking mechanism for the automatic generation of the best candidate schemas. The

algorithm gives more weight to schemas that combine the concepts with higher similar-

ity or coverage. Thus, the algorithm makes certain decisions that otherwise would likely

be taken by a human expert. We show that the algorithm runs in polynomial time and

moreover has good performance in practice. The proposed methods and algorithms are

compared to the state of the art approaches. The BioFederator design, services, and usage

scenarios are discussed. We demonstrate how our architecture can be leveraged on real-

world bioinformatics applications. We preformed a whole human genome annotation for

nucleosome exclusion regions. The resulting annotations were studied and correlated with

tissue specificity, gene density and other important gene regulation features.

We also study data processing models on grid environments. MapReduce is one pop-

ular parallel programming model that is proven to scale. However, using the low-level

MapReduce for general data processing tasks poses the problem of developing, maintain-

ing and reusing custom low-level user code. Several frameworks have emerged to address

this problem; these frameworks share a top-down approach, where a high-level language

is used to describe the problem semantics, and the framework takes care of translating

this problem description into the MapReduce constructs. We highlight several issues in

the existing approaches and alternatively propose a novel refined MapReduce model that

addresses the maintainability and reusability issues, without sacrificing the low-level con-

trollability offered by directly writing MapReduce code. We present MapReduce-LEGOS

(MR-LEGOS), an explicit model for composing MapReduce constructs from simpler com-

ponents, namely, “Maplets”, “Reducelets” and optionally “Combinelets”. Maplets and

Reducelets are standard MapReduce constructs that can be composed to define aggregated

constructs describing the problem semantics. This composition can be viewed as defining

a micro-workflow inside the MapReduce job. Using the proposed model, complex problem

semantics can be defined in the encompassing micro-workflow provided by MR-LEGOS
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while keeping the building blocks simple. We discuss the design details, its main features

and usage scenarios. Through experimental evaluation, we show that the proposed design

is highly scalable and has good performance in practice.
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Chapter 1

Introduction and Literature Survey

1.1 Grid Environments

Grid computing emerged as a framework for supporting complex operations over large

datasets. Generally, grids enable the efficient sharing and management of computing re-

sources for the purpose of performing large complex tasks. Grids have been defined as

anything from batch schedulers to peer-to-peer (P2P) platforms.

Grid computing is an overloaded term. Depending on whom you talk to, it takes on

different meanings. For the purpose of this discussion, we shall use the grid computing

definition proposed by [129]: Grid computing is any distributed cluster of computer re-

sources that provide an environment for the sharing and managing of the resources for the

distribution of tasks based on configurable service-level policies. In the rest of this thesis

we’ll use the term cloud and grid computing, interchangeably.

Grid computing enables the harnessing of large numbers of processors working in par-

allel to solve computing problems that typically spread across various domains [115, 141].

Cloud data management [9, 10, 138], storage [17, 13] and security [147, 142] are some

of the challenges recently receiving an increased interest. There also exist an increasing

1
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number of large companies that are offering cloud computing infrastructure products and

services [37, 12].

A grid fundamentally consists of two distinct parts, compute and data:

• Compute grid Provides the core resource and task management services for grid

computing: sharing, management, and distribution of tasks based on configurable

service-level polices.

• Data grid Provides the data management features to enable data integration, access,

synchronization, and distribution.

Our focus in the following discussion is on data management on grids. Nowadays many

data grid applications need to manage and process a huge amount of data distributed across

multiple and heterogeneous grid nodes. Grids encourage the publication of data in a more

open manner than is currently the case, and many e-Science projects have an urgent need to

interconnect independently operated databases through a set of data access and integration

services [11].

In the data grid area a set of services could address specific issues related to automatic

data management, processing and integration aiming at both providing high performance

and fully exploiting the grid infrastructure.

1.2 Data Federation Systems

The problem of combining heterogeneous data sources under a unified single query inter-

face is an old one. The rapid use of databases after the 1960s led to the need to combine

or merge existing repositories. This merging can be done at several levels in the database

architecture. One popular approach is Data Warehousing, where data from several source

repositories are extracted, transformed and loaded to a target repository, and then can be

queried using a unified schema (i.e. of the target repository). This process is abbreviated
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ETL and can be architecturally viewed as a tightly coupled approach because all source

data reside in a single target repository at query time.

This tightly coupled approach suffers from a serious drawback related to the data syn-

chronization between target and source repositories; every time an update is made to a

source, the update should be propagated to the target. Another difficulty with this approach

emerges when only a query interface is available at the source with no access to the whole

actual data, this problem lately received more focus with the emerge of mashups and web

services integration applications.

The recent trend in data integration has been to loosen the coupling between the data.

The idea is to provide a uniform query interface over a target schema. The query against

the target schema is then transformed into specialized queries over the source schemas.

A number of data integration systems have been proposed to address the problem of

large-scale data sharing (e.g. [58], [49], [91], see also the survey by Halevy [65]). These

systems support rich queries over large numbers of autonomous and heterogeneous data

sources by making use of semantic relationships between the different source schemas and

a mediated schema, that is designed globally. However, the mediated schema becomes a

problem itself. First of all, it may be hard to come up with a single mediated schema that

everyone agrees on. Moreover, all the access (querying) is done via a single point (the

mediated schema). Furthermore, this architecture is not robust with respect to the changes

in the source schemas. As a result, data integration systems based on mediated schemas

are limited in supporting large-scale distributed and autonomous data sharing.

Peer Data Management Systems (PDMS), e.g., Piazza in [66], have been proposed to

address the aforementioned problems and to offer an extensible and decentralized data shar-

ing system. The requirements of the proposed integration architecture are, in principle, no

different from these peer data management systems. The proposed data federation archi-

tecture emphasizes the use of tools and services that facilitate mappings among schemas
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and generate the queries that are needed to access and integrate the data. In many respects

our vision is similar in spirit to that of the SHARQ project [24] and the study in [137].

Some of the current research in data integration concerns the semantic integration prob-

lem. This problem is not about how to structure the architecture of the integration, but how

to resolve semantic conflicts between heterogeneous data sources.

1.3 Data Federation in the Bioinformatics Domain

Biological data sources accessible through the internet are proliferating in an unprecedent

manner and there is an increased need for architectures and tools that are capable of inte-

grating information available from a variety of sources.

As of September 2006, the Gene Expression Omnibus (GEO) repository at the Na-

tional Center for Biotechnology Information (NCBI) holds over 3.2 billion measurements

deposited by more than 2000 laboratories from around the world [21]. Public centralized

repositories are the state-of-the-art approach for scientists to collaborate and share their

data.

Centralized repositories, like GEO or UCSC Genome Browser[79], are only partially

serving such collaboration needs. Bioinformatics is a multidisciplinary field. As such, sci-

entists from different domains may require a customized view or organization of data. For

example, a specific schema definition may be suitable for a computer scientist. However, a

biologist may be more comfortable with a different organization of the data. Moreover, the

capabilities of relating such views, dynamic sharing, and evolution of data are challenges

calling for novel web architectures. The proposed architecture is an attempt to address such

challenges. It aims to transform public centralized web repositories into a decentralized

one that could dynamically evolve, while providing more services. Groups of scientists

can dynamically define new schemas, populate such schemas with data, update existing

schemas/data, and define relations between existing schemas/data that others can use.
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1.3.1 Challenges

There are numerous challenges that must be overcome when federating heterogeneous

bioinformatics data sources. In the following, we start by discussing the major character-

istics of those data sources and hence, highlight challenges that need to be resolved when

trying to federate them.

• Heterogeneous representation: Similar data can be contained in several data sources

but represented in a variety of different ways depending on the source. This hetero-

geneity include semantic, structural, naming, and content differences [134]. This

highlights the challenge of dealing with schema complexity and structural differ-

ences among different sources. Moreover, each source may refer to the same se-

mantic concept or field with its own identifier or term, which can lead to a semantic

discrepancy between the many sources. The opposite may also happen, as some data

sources may use the same term to refer to different semantic objects. Finally, the

content differences involve sources that contain different data for the same semantic

object, or that have some missing data, thus creating some possible inconsistencies

between sources. This heterogeneity in representation leads to issues such as entity

identification across sources and data inconsistency, redundancy and quality issues.

• Data variety: The data maintained by the current data sources cover several bioinfor-

matics research fields. For example, typical data include gene sequences and expres-

sions, disease information, molecular structures, micro-array data, protein sequences,

structures and interactions, etc. Depending on how large or domain-specific the data

sources are, they can store different types of data. Moreover, bioinformatics data

can be characterized by many relationships between concepts and entities, which are

sometimes difficult to identify formally since some of these concepts are abstract or

in other cases they span several research fields. Also, the challenge is not because

the quantity of data available in a data source is huge, but also the size of each data
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item or record may itself be extremely large (e.g DNA sequences or 3-D protein

structures). This differs, for example, from business data integration scenarios where

there is usually no real need to handle the issue of very large data units.

• Querying capabilities: Individual sources provide their own user interface, which

need to be learned in order to retrieve information. Additionally the sources often

allow for only certain types of queries to be asked and hence protecting and pre-

venting direct access to their data. These access restrictions force users and external

systems to adapt and limit their queries to a certain form. Authors in [134] note that

bioinformatics sources require biologists to master many different interfaces, more-

over, some useful information cannot be retrieved because of query restrictions even

though the data necessary to answer them is available in the data sources.

• Autonomy of data sources: Most of data sources operate autonomously, which

means that they are free to modify their design and/or schema, remove some data

without any prior “public” announcement, or occasionally block access to the source

for maintenance or other purposes. Furthermore, they may not always be concerned

by other sources referencing them or integration systems accessing them. Moreover,

all sources are web-based and are therefore dependent on network traffic and avail-

ability. In addition to the sources being autonomous, the data is also dynamic and

new discoveries will continuously modify the source content to reflect the new find-

ings. So, the only way for an integration system to be certain about returning the

latest information is to actually access the data sources at query time.

1.3.2 Variability among Federation Approaches

The existing systems for federating bioinformatics sources vary along several aspects, and

we will discuss these aspects in the following:
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• Integration Objective: This is concerned by the overall goal of the integration sys-

tem. Some systems are “portal” based in that they aim to support an integrated

browsing experience for the user (e.g. SRS [88], BioNavigator [127]). Others are

more ambitious in that they take user queries and return results of running those

queries on the appropriate sources (e.g. DiscoveryLink [62], TAMBIS [20]).

• Inter-relations among data sources: This is concerned about the assumptions made

on the inter-relations between sources. Most systems assume that sources they are in-

tegrating are “complementary” in that they export different parts of the schema. Oth-

ers also consider the possibility that sources may be overlapping (c.f. [6]) in which

case aggregation and combination of information is required. Integrating comple-

mentary sources is sometimes called “horizontal integration” [134] while integrating

the overlapping sources is called “vertical integration”.

• Data model: This refers to the assumptions made by the integration system about

the nature of the data being imported from the sources. Some systems have text

models of data (e.g. SRS [88], BioNavigator [127]), while others have structured data

models. In case of structured models, systems differ in terms of the specific model

assumed including relational and object-relational data models (c.f. DiscoveryLink

[62]) and nested semi-structured data models (e.g. XML and CPL [42]).

• Usage types: This is concerned about the type of usage scenarios that the system is

designed to support. The systems that primarily support browsing need to assume

little experience on the part of users. In contrast, systems that support user-queries

need to assume some level of experience on the users part and in formulating queries.

Some of these systems (e.g. [42]) assume queries to be formulated in specific lan-

guages, while others (c.f. [20]) provide interactive support for users in formulating

queries.
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• User control level: This addresses the extent to which the user has control over

and is able to specify the particular sources that are needed to be used in answering

queries. Some systems (e.g. [42]) require the user to select the appropriate sources to

be used. Other sources (e.g. [20]) hard code specific parts of the integrated schema

to specific sources.

The integration approaches used in the current systems can be classified first in terms

of the data model they use text, structured data or linked records.

For systems that view sources as exporting mainly text, integration involves supporting

keyword/text search across the sources. When the sources are viewed as exporting more

structured data, there are two broad types of integration approaches, based on whether the

data from the sources is warehoused or accessed on demand from the sources.

Finally, for systems that view sources as exporting linked sets of browsable content, in-

tegration involves supporting effective navigation across sources. Since the majority of sys-

tems use the (semi-)structured or linked record models, in the following, these approaches

are discussed in more detail.

1.3.3 Warehouse-based Integration

The warehouse integration approach works by materializing the data from multiple data

sources into a local warehouse and executing all queries on the data contained in the ware-

house instead of the actual source data. Warehousing emphasizes data translation, as op-

posed to query translation in mediator-based integration [134] (discussed later).

In fact, warehousing requires that all the data imported from the sources be translated

through data mapping to a standard representation before it is physically stored locally.

Since warehousing relies less on the network to access the data, it is obvious that it helps

eliminating various problems (e.g. network bottlenecks, low response times, and unavail-

ability of sources).
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Moreover, using materialized warehouses allows for the application of efficient query

optimization strategies, since it can be performed locally [52, 41]. Another benefit in the

warehouse integration approach is that it allows the system or the user to filter, modify,

validate, and annotate the data retrieved from the sources [40, 68].

This approach however has some important drawbacks related to the data synchroniza-

tion between the warehouse and source repositories; every time an update is made to a

source, the update should be propagated to the warehouse. Warehouse integration must

indeed regularly check throughout the underlying sources for new or updated data and then

reflect those modifications on the local copy of the data [41]. Another difficulty with this

approach emerges when only a query interface is available at the source with no access to

the whole actual data, this problem lately received more focus with the emerge of mashups

and web services integration applications.

1.3.4 Mediator-based Integration

Mediator-based integration concentrates on query translation. A mediator is a system that

is responsible for reformulating (at runtime) a query given by a user on a single mediated

schema into a query on the local schema of the underlying data sources. Unlike in the

warehouse approach, none of the data in a mediator-based integration system is converted

to a unique format according to a data translation mapping. Instead a different mapping

is required to capture the relationship between the source descriptions and the mediator

and thus allow queries on the mediator to be translated to queries on the data sources.

Specifying this correspondence is a main step in creating a mediator, as it will affect both

how difficult the query reformulation is and how easily new sources can be added to or

removed from the integration system. The two main approaches for establishing the map-

ping between each source schema and the global schema are global-as-view (GAV) and

local-as-view (LAV) [52, 86]. In the GAV approach, the mediator relations are directly

written in terms of the source relations. In other words, each mediator relation is nothing
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but a query over the data sources. The GAV approach facilitates query reformulation as

it simply becomes a view unfolding process; however handling additions or removals of

sources is much more difficult as it requires a modification of the mediator schema to take

into account the changes.

In the LAV approach, every source relation is defined over the schema and relations of

the mediator. Therefore, It is up to the individual sources to provide a description of their

schema in terms of the global schema, making it very simple to add or remove sources but

also complicating the query reformulation and processing role of the mediator.

Clearly both of these approaches have some cons and pros, but LAV is considered to be

much more appropriate for large scale ad-hoc integration because of the low impact changes

to the information sources have on the system maintenance, while GAV is preferred when

the set of sources being integrated is stable and known in advance.

Several of the bioinformatics integration systems were developed before the advent

of the mediated systems, and instead follow the federated database model. A federated

database integration system consists of underlying sources which are autonomous compo-

nents but which also cooperate to allow controlled access to their data. The study in [124]

explains that federated integration can be seen as a middle-ground between no integration

(where a user must query each source individually) and total integration (where a user

can only query the sources through the integration system). In federated integration the

schemas of the component sources are put together to form an integrated schema on which

queries will be asked. Seen from this point, mediated systems could be seen as a loosely

coupled versions of federated systems.

1.3.5 Peer Data Management System

Peer Data Management System ”PDMS” is a new class of data sharing tools that preserves

semantics and rich query languages, but which facilitates ad hoc, decentralized sharing,

and administration of data and defining of semantic relationships [66].
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PDMS addresses two main problems in previous approaches: they typically require a

comprehensive schema design before they can be used to store or share information and

they are difficult to extend because schema evolution is heavyweight and may break back-

ward compatibility. As a result, many small-scale data sharing tasks are more easily fa-

cilitated by non-database-oriented tools that have little support for semantics. The goal of

the peer data management system (PDMS) is to address this need by proposing the use

of a decentralized, easily extensible data management architecture in which any user can

contribute new data, schema information, or even mappings between other peers’ schemas.

PDMSs represent a natural step beyond data integration systems, replacing their single log-

ical schema with an interlinked collection of semantic mappings between peers’ individual

schemas.

1.3.6 Navigation-based Integration

The idea of link-based or navigation integration emerged from the fact that an increasing

number of sources on the web require users to manually browse through several web pages

and data sources in order to obtain the desired information [41]. In fact the main motive

justifying this type of integration is that some sources provide the users with pages that

would not or difficult to be accessible without this navigational approach. The specific

paths constitute workflows in which the output of a source or tool is directed to the input of

the next source until the requested information is reached [27]. Queries can be transformed

into several path expressions that could each answer the query in a different way [105].

Navigational integration eliminates relational modeling of the data and instead applies

a model where sources are defined as sets of pages with their interconnections, as well as

additional information such as content, path constraints, and optional or mandatory input

parameters [28, 86]. The study in [53] claims that this model effectively allows the rep-

resentation of cases where the page containing the desired information is only reachable

through a particular navigation path. The study in [83] explores the path-based approach



www.manaraa.com

12

by analyzing paths between biological sources. The observation was that multiple physical

paths can link two sources. Therefore, the goal is to determine properties of links between

sources and use these properties to identify the best of several potential execution paths that

can answer a given query.

1.3.7 Discussion on Integration Approaches

As previously discussed, the warehouse approach can provide two clear advantages. First,

it simplifies query optimization and processing by storing the data locally according to a

single global schema. Second, it enables users to add their own annotations to some stored

data and specify some filtering conditions to clean the data as it is stored locally. Although

this would indeed be a definitive improvement for the user of the system, it is still unclear

how this process could be achieved efficiently, and more specifically how the data could

effectively be validated or modified without requiring costly and time consuming human

intervention, as well as extensive domain expertise. The data retrieved and integrated in the

warehouse will indeed eventually have to be converted into a warehouse-specific format.

Furthermore, as mentioned earlier, data warehousing in general must still face the vast

problem of handling updates in the data sources, which here would be an even greater

challenge as the data contained in the warehouse may be modified and annotated, and

therefore always different from the data in the underlying sources. It is however interesting

to note that despite those negative aspects, authors in [68] have suggested that a large

curated warehouse was the only effective approach, given the pervasive data inconsistency

across sources.

The GAV and LAV approaches were discussed for mediator-based integration, it is in-

teresting to note that they are not frequently implemented in the biological integration sys-

tems. A reason may simply be that biologists started working on biological databases and

repositories long before web-based data integration became a research field in Computer

Science [69]. Initially, most systems were either warehouses or federated databases, which
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have survived and evolved since. Only relatively recently has the field lead to wrapper-

oriented or navigational approaches. The concept of navigational integration has in fact not

yet established itself as a true alternative to the other, more common integration approaches.

The study in [41] even doubt that link-driven integration is pertinent to bioinformatics in-

tegration because it does not offer enough querying functionality and because it is not well

adapted to the extent of the data available and to the continuously changing sources. How-

ever, path-based optimization of queries seems like a promising direction.

Most of the currently widely used integration systems (like TAMBIS and K2 [40]) only

address the horizontal dimension of data integration. In integrating only sources that have

complementary data, an integration system does not take into account the potential over-

lapping aspect of sources or the probable incompleteness of some sources. Restricting the

integration process to simply combining data from sources that contain different types of

information limits the capability of a system, especially in terms of reliability and com-

pleteness.

A purely horizontal integration system cannot address important issues related to ef-

fectiveness and efficiency. Aggregation of information and sources is also necessary. Con-

sidering the possibility of having several candidate sources for the same mediator relation

would essentially allow a system to address these issues. DiscoveryLink makes an attempt

to solve the problem of selecting between several potential sources by using the estimated

query processing cost given by the individual wrappers, although the overlap and coverage

point of view of optimization and source selection is not considered.

The concept of the peer data management system emphasizes not only an ad hoc, scal-

able, distributed peer-to-peer computing environment, which is compelling from a dis-

tributed systems perspective, but it provides an easily extensible, decentralized environ-

ment for sharing data with rich semantics. This is in contrast to data integration systems,

which have a centralized mediated schema and administrator and which can impede small,

point-to-point collaborations. It also complements the knowledge representation work of



www.manaraa.com

14

the Semantic Web by providing a mechanism for translating between different ontologies

data representations. Our proposed data federation architecture builds on the concepts of

peer data management, and identifies the essential components for realizing such systems.

The proposed architecture emphasizes the use of tools and services that facilitate mappings

among schemas, combining schemas into unified integrated non-redundant representation

and generating the queries that are needed to access and integrate the data.

1.4 The Schema Matching and Integration Problems

Some of the current research in data integration is concerned with the problem of semantic

integration. This problem is not mainly about the architectural structure of the integra-

tion process, on the other hand, it is specifically concerned with the problem of resolving

semantic conflicts between heterogeneous data sources.

The objective of schema integration is to find a unified and nonredundant representa-

tion of the data, used to simplify the access to heterogeneous data sources. In artificial

intelligence, this can be regarded as the problem of integrating independently developed

ontologies into a single ontology [118].

Since the schemas are independently developed, they often have different terminology

and structure. This can be easily attributed when the schemas are from different domains.

But, it can also occur even if they model the same real world domain, merely because they

were developed by different people in different contexts.

A first step in schema integration is to identify the inter-schema relationships. This is

a process of schema matching. Once these matching elements are identified, they can used

to construct a unified integrated schema. During the integration process or sometimes as a

separate step, queries can be created that permit translation of data from the original source

schemas into the target integrated schema. A variation of the schema integration problem is

to integrate an independently developed schema with a given conceptual schema, which re-
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quires reconciling the terminology and structure of the two schemas, which again involves

schema matching. In Section 1.4.1 we’ll review the schema matching problem, then we’ll

build on this discussion to formulate our problem and introduce our approach for schema

integration in Section 1.4.2.

1.4.1 Schema Matching

One of the basic operations in data integration is the process of matching concepts describ-

ing the meaning of data in heterogeneous distributed data sources. Due to the cognitive

complexity of this matching process, it has traditionally been performed by human experts

(e.g., database analysts).

Schema matching is a fundamental operation in the manipulation of schema informa-

tion, which takes two schemas as input and produces a mapping/correspondances between

elements of the two schemas that correspond semantically to each other [118]. Schema

matching plays a central role in various applications, such as web services data integration,

schema integration, data warehousing and database design.

Traditionally, schema matching was typically performed manually, in some cases sup-

ported by a graphical user interface. It is clear that manually specifying schema matching

is a tiring, time-consuming, error-prone, and therefore expensive process. This is a growing

problem given the rapidly increasing number and complexity of data sources. Moreover,

the level of effort is at least linear in the number of matches to be performed, even worse

than linear if we need to evaluate each match in the context of other possible matches

of the same elements. Moreover, introduction of the Semantic Web vision and the shift

towards machine-understandable web resources have manifested the importance of auto-

matic matching between sets of elements. So, a faster and less labor-intensive matching

approach is needed and this requires automated support for schema matching. Generally, it

is not possible to fully determine automatically all matches between two schemas, because

most schemas have some semantics that affects the matching process but is not formally
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or explicitly expressed. The schema matching should therefore determine match candi-

dates, which the user can accept, reject or change. Moreover, sometimes the user could

be involved in specifying matches for elements for which the system was unable to find

satisfactory match candidates.

Schema matching methods can be classified based on various perspectives as described

in the following [118]:

• Instance vs schema: matching approaches can consider instance data (i.e., data val-

ues) or only schema-level information (i.e., metadata).

• Element vs structure matching: match can be performed for individual schema el-

ements, such as attributes, or for combinations of elements, such as complex schema

structures.

• Language vs constraint: a matcher can use a linguistic-based approach (e.g., based

on names and textual descriptions of schema elements) or a constraint-based ap-

proach (e.g., based on data types, keys and relationships).

• Matching cardinality: the overall match result may relate one or more elements of

one schema to one or more elements of the other, giving four cases: 1:1, 1:n, n:1,

n:m. In addition, each mapping element may interrelate one or more elements of the

two schemas.

• Auxiliary information: most matchers rely not only on the input schemas but also

on auxiliary information, such as ontologies, dictionaries, global schemas, previous

matching decisions, and user input.

Note that the classification does not distinguish between different types of schemas

(e.g., relational, XML, object-oriented, etc.) and their internal representation, because

schema matching algorithms depend mostly on the kind of information they exploit, not

on its representation.
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The above classification is concerned with individual matching techniques. Sometimes

it is useful to use multiple matchers, therefore, it is important to differentiate two sub-

problems. First, there is the realization of individual matchers, each of which computes

a matching based on a single criterion. Second, there is the combination of individual

matchers, either by using multiple matching criteria within an integrated hybrid matcher

or by combining multiple match results produced by different match algorithms within a

composite matcher.

In the following, we discuss the main alternatives according to the above classification

criteria. We discuss schema-based matching followed by a discussion of instance-based

matching.

Schema-based Matching

Schema-based matchers only consider schema information, not instance data. The

available information includes the usual properties of schema elements, such as name, de-

scription, data type, relationship types (part-of, is-a, etc.), constraints, and schema struc-

ture. In general, a matcher will find multiple match candidates. For each candidate, it is

customary to estimate the degree of similarity by a normalized numeric value in the range

0...1, in order to identify the best match candidates (as in [107], [106], [23], [46] and [32]).

We first discuss the main alternatives for match granularity and match cardinality. Then

we cover linguistic and constraint-based matchers.

• Match granularity: There are two main alternatives for the granularity of the match-

ing, element-level and structure-level matching. For each element of the first schema,

element-level matching determines the matching elements in the second input schema.

In the simplest case, only elements at the finest level of granularity are considered,

which we call the atomic level, such as attributes in an XML schema or columns in

a relational schema. On the other hand, structure-level matching refers to matching
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combinations of elements that appear together in a structure. A range of cases is pos-

sible, depending on how complete and accurate a match of the structure is required.

• Match cardinality: An element in the schema can participate in zero or more map-

ping elements of the match result between the two input schemas. Moreover, within

an individual mapping element, one or more elements in one schema can match one

or more elements in the other schema. Thus, we have the usual relationship cardi-

nalities, namely 1:1 and the set-oriented cases 1:n, n:1, and n:m, between matching

elements. When matching multiple elements at a time, expressions are used to spec-

ify how these elements are related. Previous work has mostly concentrated on such

1:1 matches because of the difficulty of automatically determining the mapping ex-

pressions in the other cases. Most existing approaches map each element of one

schema to the element of the other schema with highest similarity. More work is

needed to explore more sophisticated criteria for generating local and global n:1 and

n:m mappings, which are currently hardly treated.

• Linguistic approaches: linguistic or language-based matchers use names and text to

find semantically similar schema elements. We shall discuss two schema-based ap-

proaches, name matching and description matching. Name matching Name match-

ing matches schema elements with equal or similar names. Similarity of names can

be defined and measured in several ways, including: 1) Equality of names (an impor-

tant variation is the equality of names from the same XML namespace), 2) equality

of canonical name representations after preprocessing (e.g. stemming), 3) equality of

synonyms, 4) equality of hypernyms, 5) similarity of names based on common sub-

strings, edit distance, pronunciation, etc., and 6) user-provided name matches. De-

scription matching Schemas often contain comments in natural language to express

the intended semantics of schema elements. These comments can also be linguisti-

cally evaluated to determine the similarity between schema elements
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• Constraint-based approaches: Schemas often contain constraints to define data

types and value ranges, uniqueness, options, relationship types and cardinalities, etc.

If both input schemas contain such information, it can be used by the matching mod-

ule to determine the similarity of schema elements [84]. For example, similarity can

be based on the equivalence of data types and domains, of key characteristics (e.g.,

unique, primary, foreign), of relationship cardinality (e.g., 1:1 relationships).

Instance-based Matching

Instance-based data can give important insight into the contents and meaning of schema

elements. This is extremely useful when schema information is limited, as is often the

case for semi-structured data, or in the extreme case, when no schema is given. Even

when substantial schema information is available, the use of instance-based matching can

be valuable to uncover incorrect interpretations of schema information. For example, it

can help disambiguate between equally evaluated schema-based matches by choosing to

match the elements whose instances are more similar. Most of the approaches discussed

previously for schema-based matching can be applied to instance-based matching.

Several tools for automated schema matching, such as GLUE [47] and OntoBuilder

[57], have been developed in recent years. Given two data schemata (e.g., two sets of

attributes), these tools output a single mapping from elements of one schema to elements

of the other. The outputted mapping is considered to be the best of all possible mappings

between these schemata.

Although these tools comprise a significant step towards fulfilling the vision of au-

tomated schema matching, it has become obvious that the user must accept a degree of

imperfection in this process [56]. A main reason for this is the enormous ambiguity and

heterogeneity of data description concepts: It is unrealistic to expect a single mapping en-

gine to identify the correct mapping for any possible concept in a set. Another reason is
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that “the syntactic representation of schemas and data do not completely convey the se-

mantics of different databases” [95]; i.e., the description of a concept in a schema can be

semantically misleading. Therefore, managing uncertainty in schema matching has been

recognized as the next issue on the research agenda in the context of data integration [90].

The study in [55] offers an uncertainty management tool, extending the practice in

schema matching by using top-K schema mappings rather than a single best mapping. This

is a natural extension of existing methods (which can be considered to fall into the top-1

category), taking into account the uncertainty described above.

1.4.2 Schema Integration

The input to integration is a set of source schemas that relate to each other through cor-

respondences or constraints. The output is a consolidated target schema that constitutes a

nonredundant unified representation of all the data.

Schema integration has been an active research field for a long period of time and con-

tinues to be a challenge in practice [22, 26, 96, 128, 111, 34, 112]. This problem lies at the

core of many metadata applications, such as view integration, mediated schema creation,

and ontology merging. The spectrum of applications extends to web-service integration,

mashups and distributed web architectures [115].

Although today the process of integrating schemas is partially automated, it is still

labor-intensive. In order to reduce the amount of manual intervention that is required from

users, we need to modify or avoid parts of the integration process that unnecessarily in-

crease the load on users. Let us follow the steps that generally need to take place while

combining two input schemas.

First, the input schemas are run through one or more schema matching algorithms that

return correspondences between the elements of the schemas. Such correspondences typ-

ically have weights reflecting the confidence of the matchers that the two elements are

similar or have overlapping semantics. Moreover, the weights in each direction can be
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Figure 1.1: State of the art.

different; thus, an element A can be similar to (or covered by) an element B with weight

w, while the element B is similar to (or covered by) element A with weight w′, where w

and w′ are not necessarily equal. We say in such situation that there are two directed and

weighted correspondences between elements A and B. In a second step, all the directed

correspondences between two elements1 are merged (by some aggregation process) into

one undirected correspondence with one aggregated weight. Correspondences for which

the aggregated weight is above a threshold are kept, while the rest are discarded. More-

over, after the above pruning step, the weights of the remaining set of correspondences are

typically themselves discarded. In the third step, several alternatives for combining the in-

put schemas are available, based on the surviving correspondences, and schema integration

tools provide interactive means for the users to select a desired integrated schema.

Consider the naive example in Figure 1.1. The two simple input schemas describe the

structure of two elements: householder and member. These schemas are run through one

or more matching algorithms. For simplicity, assume in this example that atomic elements

that match are assigned correspondences weighted with a similarity of 1, in both direc-

tions. Correspondences that have weight 0 are not shown. The schema matching algorithm

then calculates the overall similarities between the non-atomic elements, by aggregating

1There could be more than two if there are multiple schema matchers.
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in some way the similarities of the sub-elements. In this example, all the sub-elements of

member match the sub-elements of householder, and therefore member is covered entirely

by householder. Thus, we can conclude that there is a directed correspondence member→

householder with the similarity/weight of 1. On the other hand, the element householder

contains some sub-elements that are unique, and as a result the similarity of the directed

correspondence householder → member is less than 1.2 One can see that the weights of

the derived correspondences give valuable hints about the coverage of one element by an-

other. Such information is more refined than just saying whether two elements match or

not. In particular, it can suggest that one element is likely to be an extension or represents

a sub-concept of the other element.

In the second step, the results of the matching algorithm are transformed into the undi-

rected correspondences used for the generation of the integrated schema. There are several

ways to combine the elements of the two schemas, but in this simplified example there

are three natural choices: (1) merge the two root elements householder and member into

one, (2) introduce an extension relationship (or reference) that will say that householder

is an extension of member, or (3) do not combine the two elements at all and just take the

union of them. This is a simple example; in reality schemas are larger and there are more

complex relationships between elements. Consequently, the space of possible candidate

schemas that can result from combining the input schemas can be quite large.

The third step in the schema integration process is then concerned with identifying the

“best” integrated schema among these alternatives. In most methods, the alternatives are

not created explicitly in the system, and the user must “drive” the generation of one inte-

grated structure. A good example of such system is described in [111]; in their method,

the expert provides a “template” of the integrated schema (also called a mapping model)

that effectively specifies the structure of the merged schema and provides the basis for ac-

cumulating all the attributes and the relationships from the input schemas. A different kind

2Section 3.3 will show one method for calculating the similarity measure for complex elements
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of method, that is based on the explicit identification of the alternative schema structures,

is described in [34]. In their system, a user can systematically explore the alternatives and

narrow down, in an interactive way, the desired integrated schema. The advantage of such

method is that it is based on a systematic enumeration of the design choices and provides

more information to a user. The disadvantage is that it still relies heavily on the user to

explore the available choices and decide which ones are better.

Overview of our approach In this thesis we address the above shortcomings in the schema

integration process as follows. (See also Figure 1.2.) First, we keep all the information

generated by the matching algorithms. In particular, we make use of both the direction

and the weights associated with the correspondences between elements. This information

enables us to define more refined relationships on the integrated schema. More impor-

tantly, this information enables us to rank the integrated schemas, by giving higher priority

to schemas that combine the concepts with higher similarity or coverage. Based on this

ranking, we devise a polynomial time, efficient algorithm for the generation of the top-k

integrated schemas. As a consequence, the resulting system avoids the generation of the

unlikely schemas and therefore minimizes the user effort. In the extreme, the process can

be entirely automated by generating the single schema that is the best according with our

ranking.

We also show experimentally that the algorithm performs well in practice, on real

schemas, and moreover it generates the “expected” schemas.

Our method uses an extension on the framework of [33, 34] for schema enumeration,

where we replace the user-driven exploration of the space of schemas with top-k generation.

As in [34], we use graphs of concepts with has relationships to represent, at a higher-level

of abstraction, XML and relational schemas. A concept of a schema is a relation name

with an associated set of attributes and, intuitively, represents one category of data (an

entity type) that can exist according to that schema (e.g., an “employee”, a “department”,

an “address”, etc.). Concepts in a schema may have references to other concepts in the
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Figure 1.2: Our solution: keeps more information, outputs the more likely schemas.

schema and these references are captured by has edges (e.g., “employee” contains a has

edge to “department”, etc.).

We note that schema matching techniques have been extensively studied [118, 93, 25].

Our method is complementary to schema matching, since it uses the outcome of schema

matching. Furthermore, the emphasis here is on using directed similarities rather than the

more common undirected similarities.

1.5 Bioinformatics Applications

A problem facing many bioinformatics researchers today is the aggregation and analysis of

vast amounts of data produced by large scale projects from various laboratories around the

world. Depositing such data into centralized web-based repositories (e.g. NCBI, UCSC

Genome Browser) is the common approach. However, the distributed nature of the data, its

growth rate, and increased collaborative needs represent real challenges calling for novel

decentralized web architectures.

We study the requirements for realizing a web services-based data federation archi-

tecture for bioinformatics applications. Based on collaborations with bioinformatics re-

searchers, several domain specific data federation challenges and needs are identified. We
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address such challenges and provide an architecture that incorporates a series of utility ser-

vices. These address issues like automatic workflow composition, domain semantics, and

the distributed nature of the data. It also incorporates a series of data-oriented services that

facilitate the actual integration of data. The proposed design, services, and usage scenar-

ios are studied and discussed. We demonstrate how our architecture can be leveraged for

real-world bioinformatics problems; specifically we address the analysis of nucleosome

exclusion regions across the human genome to study its role and importance as a gene

regulation mechanism and how it is correlated to tissue specificity, gene density and other

features.

Nucleosomes are the basic structural units of eukaryotic chromatin, and they play a

significant role in regulating gene expression. Specific DNA sequence patterns are known,

from empirical and theoretical studies, to influence DNA bending and flexibility, and have

been shown to exclude nucleosomes. A whole genome localization of these patterns, and

their analysis, can add important insights on the gene regulation mechanisms that depend

upon the structure of chromatin in and around a gene.

A whole genome annotation for nucleosome exclusion regions (NXRegions) was car-

ried out on the human genome. Nucleosome exclusion scores (NXScores) were calculated

individually for each nucleotide, giving a measure of how likely a specific nucleotide and

its immediate neighborhood would impair DNA bending and, consequently, exclude nu-

cleosomes. The resulting annotations were correlated with 19055 gene expression profiles.

We developed a new method based on Grubbs’ outliers test for ranking genes based on

their tissue specificity, and correlated this ranking with NXScores. The results show a

strong correlation between tissue specificity of a gene and the propensity of its promoter

to exclude nucleosomes (the promoter region was taken as −1500 to +500 bp from the

RefSeq-annotated transcription start site). In addition, NXScores correlated well with gene

density, gene expression levels, and DNaseI hypersensitive sites. Nucleosome exclusion

patterns are correlated with various factors that regulate gene expression, which empha-
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sizes the need to include chromatin structural parameters in experimental analysis of gene

expression.

1.6 A Cloud Data Processing Abstraction Layer

Cloud computing is a model for enabling convenient, on-demand network access to a

shared pool of configurable computing resources that can be rapidly provisioned and re-

leased with minimal management effort or service provider interaction [35]. Cloud com-

puting enables the harnessing of large numbers of processors working in parallel to solve

computing problems that typically spread across various domains [115, 45, 141]. Cloud

data management [9, 10, 138], storage [17, 13] and security [147, 142] are some of the

challenges recently receiving an increased interest. There also exist an increasing number

of large companies that are offering cloud computing infrastructure products and services

[37, 12].

Cloud computing has lately received wide interest, and along with this interest has come

several advancements in the tools for programming them. MapReduce (MR) is one such

tool, an attractive option to many programmers because it provides a simple model through

which users are able to express relatively sophisticated distributed programs [130].

MapReduce is a programming paradigm to perform parallel computations over dis-

tributed and very large data sets. There are numerous open source and commercial avail-

able implementations. The most popular MR system is Hadoop, an open-source project

under development by Yahoo! and the Apache Software Foundation [18]. The details of

MapReduce are described in [43, 44]. In the rest of this study, the focus will be on Hadoop

implementation of MR. In MR basically the computation takes a set of input key/value

pairs, and produces a set of output key/value pairs. The user of the MapReduce library

expresses the computation as two functions: Map and Reduce. Map, written by the user,

takes an input pair and produces a set of intermediate key/value pairs. The MapReduce
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library groups together all intermediate values associated with the same intermediate key

and passes them to the Reduce function. The Reduce function, also written by the user, ac-

cepts an intermediate key and a set of values for that key. It merges together these values to

form a possibly smaller set of values. Accordingly, the Map and Reduce functions supplied

by the user have the following associated types:

map(k1, v1)→ list(k2, v2) (1.1)

reduce(k2, list(v2))→ list(k3, v3) (1.2)

Figure 1.3 illustrates the basic dataflow in a MapReduce job. The inputs are divided into

several input splits, an “InputFormat” typically decides on the number of splits and how the

splitting is performed. For every input split, a Mapper (i.e., Map task) is assigned, where

a reader is responsible for reading the split and generating the stream of input key/value

pairs to be fed to the Mapper. The Map function is called once for every input pair and can

generate zero or more intermediate key/value pairs. Every intermediate pair is forwarded to

a partitioner; all Map tasks share the same partitioning function. The partitioner decides on

what Reducer (i.e., Reduce task) this pair should be forwarded to. The Map task maintains

a buffer for every configured Reducer. The intermediate pairs are saved into this buffer,

and when the buffer is filled-up, its contents are flushed into files on disk. In a following

shuffling phase, the MapReduce framework transfers these intermediate files to their cor-

responding Reducers. The files for a Reduce task are merged and then sorted using the

intermediate key, the main function of the sorting is to group the key/value pairs for every

distinct key into a continuous sequence on disk, as a result, each Reduce function call can

be fed an intermediate distinct key and an iterator over the corresponding values on disk.

Iterating over the values on disk eliminates any memory constraints on the Reduce-side.

The Reduce function can generate zero or more output key/value pairs, these pairs are fed

to a writer as part of the “OutputFormat” to write these pairs in the correct format to the
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Figure 1.3: Basic dataflow within a single MapRecduce job.

corresponding output part. The above brief discussion focused on the basic MapReduce

components, the interested reader can refer to [144] for more details.

1.6.1 Motivation

MapReduce offers a highly distributed programming paradigm that is efficient and scal-

able. However, using the low-level MapReduce for general data processing tasks poses the

problem of developing, maintaining and reusing custom low-level user code. In MapRe-

duce, the job is composed generally by specifying two functions/classes; a Mapper and a

Reducer. For nontrivial applications, the code for this Mapper and Reducer can get really

large and complex, and users face the problem of maintaining and reusing this code. An-

other factor that contributes to the increased complexity of Mappers and Reducers is the

fact that each job is required to read its inputs from disk and write the results back to disk.

The necessity to avoid frequent disk access promotes a tendency from MapReduce pro-

grammers to write Mappers and Reducers with aggregated and complex semantics. This

coarse granularity of the definitions for the Mappers and Reducers forfeits the appealing

simplicity proposed by the MapReduce model.

Several high-level frameworks have emerged to address this problem; Pig [103], Hive

[138], Cascading [31] and Jaql [74] are examples for such frameworks. Hive provides a

declarative query language based on SQL. Using Hive, users can express their problem
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semantics in an SQL-like language and Hive takes care of translating these semantics into

MapReduce constructs. Hive provides a convenient solution for users familiar with SQL.

On the other hand, Pig provides a procedural workflow language, namely, Pig Latin.

The user uses Pig Latin constructs to formulate the problem, and the Pig system trans-

lates these semantics to MapReduce. Pig is suitable for users who are more comfortable

in expressing their data processing problems in a procedural fashion (as opposed to the

declarative way provided by Hive SQL).

Cascading provides an API for constructing data processing workflows. The objective

is to let the developer quickly assemble complex distributed processes without thinking in

MapReduce. Cascading introduces five core components: Tuple, Pipe, Tap, Flow, and Cas-

cade. Users use these components to construct the workflow and Cascading translates them

to MapReduce. Cascading also provides a scripting interface to perform these operations.

Jaql is a query language designed for Javascript Object Notation (JSON), its core fea-

tures include semi-structured data modeling, user extensibility and parallelism. Jaql is a

functional query language that provides users with a simple, declarative syntax to do things

like filter, join, and group JSON data. MapReduce is used to achieve the required paral-

lelism. The user formulates the query using Jaql constructs and the query is then translated

to MapReduce for further execution.

1.6.2 A common feature of existing solutions

The aforementioned systems share a top-down approach, where a high-level language (or

additionally an API in case of Cascading) is used to describe the problem semantics and

the system takes care of “translating” this problem definition into MapReduce. The design

of the high-level language and the mapping of the language constructs to MapReduce are

critical aspects differentiating such systems.

Each of these high-level systems is limited by the expressive power of its language and

the mechanism that translates the language constructs to MapReduce. Additionally, the



www.manaraa.com

30

translation layer usually becomes a source of ambiguity and imposes a control limitation

on the user-side; the user doesn’t have real low-level control over the details of these con-

structed MapReduce jobs. To exercise more control, users may decide to directly write

their own Mappers and Reducers, and hence, may again face the maintenance and reusabil-

ity problems mentioned earlier.

Additionally, the aforementioned systems, assume that the user does not want to think

and formulate the problem using MapReduce constructs (i.e., Map and Reduce functions),

and hence, they provide a high-level language/abstraction with different semantics and con-

structs. Although this is true in some cases, there are still considerable number of MapRe-

duce users who prefer to think in MapReduce and write their own Mappers and Reducers.

Accordingly, there is a need for a refined MapReduce model, which gives the user

the ability to write their own Mappers and Reducers, but, at the same time, solve code

maintenance and reusability problems.

1.6.3 LEGOS Approach

Refined MapReduce Job definition: MR-LEGOS offers an explicit model for composing

Mappers and Reducers from simpler components; “Maplets” and “Reducelets”. Maplets

and Reducelets are standard Mappers and Reducers. This composition of Maplets and

Reducelets can be viewed as defining a micro-workflow inside the MapReduce job. As a

result, complex job semantics can be pushed away from Mapper and Reducer code and be

explicitly defined in the encompassing micro-workflow provided by MR-LEGOS.

Using MR-LEGOS, MapReduce programmers will be encouraged to write simple Maplets

and Reducelets that can be easily maintained, reused, and shared. Significant part of the

complexity of the job semantics can be defined using the micro-workflow as later demon-

strated using a data processing example in Section 5.2. The refined model is only limited

by the expressive power of the underlying MapReduce system, based on the fact that the

user has full control over the MapReduce job definition. MR-LEGOS only offers a logical
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organization of such definitions. A MR-LEGOS job, in its simplest form, can be reduced

to the original MapReduce definition, if the user defines a MR-LEGOS job that is merely

composed of a single Maplet and Reducelet.

Data Processing Maplets and Reducelets: Using the MR-LEGOS refined model,

users can share common reusable sets of domain specific Maplets and Reducelets. For

example, in this thesis we share the experience of building a data processing set of Maplets

and Reducelets, which are mostly relational data processing operators, in addition to a

growing set of Maplets and Reducelets that were found to be useful and common across

several data processing problems. We also believe this experience could be generalized in

different application domains.



www.manaraa.com

Chapter 2

Bioinformatics Data Federation System

Design (The BioFederator)

This proposed design presents a life sciences research architecture hosted by the IBM

sponsored LA Grid project3. LA Grid, an international grid research community, involves

collaborations between a number of IBM research centers and many universities from the

USA, Latin America, and Spain. It aims to facilitate collaborative research and develop-

ment amongst participating institutions.

The presented architecture ”The BioFederator” utilizes existing technologies and re-

search results, in an attempt to make progress toward the ever complicated data integration

problem in bioinformatics. Specifically, we have componentized Clio [63], a Java applica-

tion for schema mapping and data transformation, into several key data-oriented services

(i.e. schema mapping, query generation, query rewriting, query execution, and XML trans-

formation), each wrapped as a web service.

As a proof-of-concept approach, we utilized Taverna [72], a bioinformatics workflow

tool, to chain together the web services above and solve concrete integration problems

in the bioinformatics domain. Using Taverna, one can manually compose a workflow by

chaining together a group of web services. However, automatic workflow composition

together with capturing domain semantics are two indispensable challenges for a practical

bioinformatics data federation system on the web.

3Latin American Grid (LAGrid) – http://latinamericangrid.org/index.php

32
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To address such challenges we augmented the data-oriented services with a collection of

utility services (i.e., coordinator, semantic catalog, repository, and synchronization). The

objective is to help automate the process of workflow composition, capture the required

domain semantics and address the distributed nature of the data. The BioFederator is an

attempt to define the essential components for providing an automated, domain-specific,

modular, and decentralized data federation system on the web. Nodes of the system can

provide data and services (data-oriented or utility services) or a combination of both. Users

are able to contribute new data, define new relationships among existing schemas and data

sources, relate data to domain-specific concepts, and construct new schemas that others can

use.

The main contributions of this system are as follows. First, we present a set of data-

oriented web services that we believe are essential for realizing a high-level declarative

data federation system on the web. The study details the design, interface, and interaction

among those services. Second, we identify a set of essential components and utility services

that address the distributed nature of the data, capture domain semantics, and facilitate

automatic workflow composition. Finally, in collaboration with bioinformatics researchers

within the LAGrid community, we demonstrate how our architecture can be leveraged on a

real-world bioinformatics problems.

2.1 Background

As of September 2006, the Gene Expression Omnibus (GEO) repository at the National

Center for Biotechnology Information (NCBI) holds over 3.2 billion measurements de-

posited by more than 2000 laboratories from around the world [21]. Public centralized

repositories are the state-of-the-art approach for scientists to collaborate and share their

data.

Centralized repositories, like GEO or UCSC Genome Browser[79], are only partially

serving such collaboration needs. Bioinformatics is a multidisciplinary field. As such, sci-
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entists from different domains may require a customized view or organization of data. For

example, a specific schema definition may be suitable for a computer scientist. However,

a biologist may be more comfortable with a different organization of the data. Moreover,

the capabilities of relating such views, dynamic sharing, and evolution of data are chal-

lenges calling for novel web architectures. The BioFederator is an attempt to address such

challenges. It aims to transform public centralized web repositories into a decentralized

one that could dynamically evolve, while providing more services. Groups of scientists

can dynamically define new schemas, populate such schemas with data, update existing

schemas/data, and define relations between existing schemas/data that others can use.

The BioFederator team involves collaborators from biomedical and genetics domains.

The objective of the collaboration is to better understand domain-specific problems and

needs, and to ensure that realistic bioinformatics scenarios are addressed. A number of

bioinformatics studies exhibit the need for integrating data from multiple sources. The

study in [122] mentions some examples. Pharmacogenomics is another example for an

emerging branch dealing with the influence of genetic variation on drug response in pa-

tients, promising the advent of “personalized medicine” in which drugs and drug combi-

nations are optimized for each individual’s unique genetic makeup. To make such “per-

sonalized” medical decisions, information from multiple heterogeneous data sources needs

to be incorporated. Examples are OMIM [92] and dbSNP [126] from NCBI, TRANSFAC

database from BioBase [78], and PharmGKB [82].

Figure 2.1 shows an example study that aims to understand the rates of genes expres-

sions in different tissues and correlate these expression profiles with active transcription

factors and their binding sites. The data required for this study is distributed among

multiple heterogenous sources (e.g., UCSC Genome Browser, GNF SymAtlas [132] and

TRANSFAC). The figure shows how Clio mapping technology can be used to provide a

high-level definition for mappings between the source and target schemas. In particular, a

graphical user interface allows entering correspondences that relate schema elements. The
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Figure 2.1: High-level mapping definition using Clio

schema mapping service takes the correspondences as input and computes a more precise

mapping specification (based on the schema information, constraints, etc). This mapping

specification can subsequently be used by other services. More details on the specific data

services are provided in the Architecture and Services section, and this figure will be revis-

ited in more detail in the Usage Scenarios section.

It should be noted that the BioFederator focuses on bioinformatics data integration ap-

plications. However, a typical bioinformatics research involves both computational and

data driven aspects. While data driven processes may extract data from various sources, the

computational processes would process the data through algorithms for pattern matching,

sequence alignment, clustering etc. A computational application is discussed in Chapter 4

involving the study and analysis of nucleosome exclusion regions in the human genome.

2.2 Architecture and Services

The system is built from a collection of nodes. A node can be any device or computer hav-

ing the required web services deployed. Nodes can be dynamically added or removed, and

the system adapts to deliver quality of service requirements. Figure 2.2 depicts the architec-

ture of typical BioFederator nodes. Each node contains six components/services, namely:
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Figure 2.2: BioFederator nodes architecture

the coordinator service, the semantic catalog, the repository service, a local data reposi-

tory, the synchronization service, and the data services suite. To support system portability,

all components and services are built using Java and XML. The proposed system architec-

ture supports distributed storage and manipulation of data. One or more application servers

can connect users to the BioFederator. The application server can initiate multiple concur-

rent requests (by contacting multiple nodes). However, for every request, the application

server designates a particular node as the “master” node. Any node is capable of perform-

ing the “master” role. The master can distribute the required operations among many other

nodes and is also responsible for coordinating, collecting, and merging results from “slave”

nodes.

Coordinator Service: This service is the front-end interaction point for a given BioFed-

erator node. It maintains a list of all registered nodes in the whole system, in addition to

locally and remotely deployed services. It can access the metadata maintained in the lo-

cal semantic catalog (discussed later in detail). Coordinator services are key elements for

automated workflow construction because they are responsible for decisions involving for-

warding, splitting, or directly handling a received request.

Upon receiving a request, the coordinator needs to access the semantic catalog to re-

trieve information about data needed/involved in the request. Based on metadata and infor-
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mation about registered nodes and deployed services, the coordinator can make a decision

on how to handle the request (i.e., forward, split or directly handle).

The coordinator maintains a set of rules to help make such decisions, the efficiency and

accuracy in defining such rules is crucial for correct and efficient system performance. The

rules are a function of the quality of service, load balancing, and optimization requirements.

While a system could function well using limited rules, its performance could be enhanced

by adding and tuning rules. For example, a simple rule is to forward the request to the

first node that has the required services deployed. However, a better rule is to incorporate

the location of the data. From our experience, fine tuning rules may result in complex but

efficient workflows of services. Policies like query distribution and data materialization are

initiated by the coordinator service.

Semantic Catalog: This service provides a domain-specific organization of the data.

Figure 2.3 depicts the structure of an illustrative subset of the semantic catalog. The

BioFederator does not require a fixed structure for the semantic catalog. In fact, differ-

ent structures could arise based on application needs and it can dynamically evolve over

time. The structure used and illustrated in Figure 2.3 is inspired by the one utilized at the

UCSC Genome Table Browser4.

The semantic catalog in Figure 2.3 is organized as a set of topics in a tree structure;

the root node is the most general topic (i.e., the whole catalog) while leaf nodes represent

the most specific topics (i.e., schema definitions). Topics are labeled and each one has an

associated unique identifier, TID. This can be evaluated by traversing the tree starting from

the root, the root topic has TID=0. The depicted dark route in the figure highlights the path

traversed to evaluate the TID for the “Expression/Regulation” topic (TID=0.2.2.1.2).

The tree structure facilitates an XML representation of the catalog with the associated

query mechanisms, and a synchronization mechanism based on WSRF5 notification. How-

4http://genome.ucsc.edu/cgi-bin/hgTables
5http://www.globus.org/wsrf/
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ever, other structures could be used if the appropriate query and synchronization mecha-

nisms are provided.

Topics play an important role in the devised notification mechanism (discussed later in

the Synchronization Service). Every node in the proposed architecture defines its own set

of “topics of interest”. Individual topics are only replicated on nodes that identify them

as “topics of interest”. That is, the system does not replicate the entire catalog on all

nodes. This technique has three advantages. 1) It limits the size of the semantic catalog on

specific nodes. 2) Topics can help large systems define specialized clusters of nodes. 3) It

helps preserve autonomy of nodes (each node has full control on the contents of it’s local

catalog). Note that, if all nodes identify the entire catalog (TID=0) as a topic of interest,

then the full catalog will be replicated on all nodes. Figure 2.3 illustrates the distributed

data repository and depicts how semantic catalog topics can link to data resources stored

there. Leaf topics represent schema definitions, and they can point (using URIs6) to one

or more data resources. A basic URI is needed to point to the schema definition (XSD)

file, and additional URIs can point to one or more instances of this definition (i.e. XML

files). In addition, pointers to schema mapping files that directly relate pairs of schemas can

be specified. Such mappings, created by the Schema Mapping Creation service described

later, specify the exact semantics of data conversion from one schema to another, and can

be subsequently used by other data services.

Finally, an additional point can be noted regarding the semantic catalog. Two kinds of

schema topics are identified in the semantic catalog illustrated in Figure 2.3, specifically the

schema and the concepts schema. Schema follows the conventional definition while con-

cept schema is created by mapping schema elements to concept unique identifiers (CUIs)

from a specific conceptual model (e.g. using the UMLSKS7 Metathesaurus). For example,

a schema element representing gene identifier can be named geneID in one schema and

gID in another, however both will be mapped to the same UMLSKS CUI: C1706509. Typ-

6Uniform Resource Identifiers
7Unified Medical Language System Knowledge Source Server, http://umlsks.nlm.nih.gov
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Figure 2.3: Semantic catalog structure and relation with data repository elements

ically, the conventional schema and its corresponding concepts schema exhibit the same

structure. Mutual correspondences between conventional and concept schemas are stored

in the semantic catalog. Concept schemas can be useful for deriving relations among dif-

ferent schema definitions (e.g. to discover if a given schema is equivalent, a superset, or a

subset of an existing one).

Repository Service and the Data Repository: Currently, this service is implemented

on top of the Apache Commons Virtual File System (VFS)8. VFS provides APIs for access-

ing different file systems and presents a unified view of files from different sources (local

disk, remote ftp, or http servers).

The repository service is responsible for storing and extracting all raw data (via the

VFS). It also notifies the synchronization service if there are any changes to the local repos-

itory. In the current implementation, only a pure XML data repository is supported. Other

data representations can be supported only if the data can be exported as XML.

Synchronization Service: The synchronization service keeps the local semantic cat-

8http://jakarta.apache.org/commons/vfs/
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alog entries synchronized with other nodes. When a node is added, it has the option of

subscribing itself to various topics. Whenever a change occurs in the semantic catalog (of

one node) affecting a certain topic, nodes that are subscribing to that topic receive notifica-

tions with the update. This service can use the WSRF notification mechanism provided by

the Globus Toolkit.

MR-LEGOS Service: This is a data processing service, that can receive definitions

of bioinformatics data processing tasks, and can submit them to a MapReduce cluster

for processing. MR-LEGOS is a tool for composing MapReduce constructs from sim-

pler components, namely, “Maplets”, “Reducelets” and optionally “Combinelets”. Using

MR-LEGOS, complex bioinformatics problems can be defined in an easier and more ef-

ficient way. Standard bioinformatics processing components (i.e., bioinformatics-specific

Maplets and Reducelets) can be shared and reused by groups of scientists in a highly col-

laborative way. The details of MapReduce and the MR-LEGOS model will be addressed in

Chapter 4.5.6. The MR-LEGOS service also communicates with the repository service, so

it can retrieve input data files for processing, and finally store the result into the repository.

Data Services Suite: This component provides a number of web services that allow

the creation of schema mappings and operations over those schema mappings. We have

selected Clio’s [63] schema mapping components, and wrapped them into web services.

The suite provides the following data services:

• Schema Mapping Creation: Given a source and a target schema, and a set of “cor-

respondences” between source and target schema elements, this service creates a

“mapping” from the source to the target schema. This mapping consists of a set of

declarative constraints that dictate what the target instance should be, given a source

instance. The mapping creation algorithm takes into account the schema constraints

(e.g., foreign key constraints, type constraints) as well as the correspondences [109].

• Query Generation: Given a mapping (produced by the Schema Mapping Creation

service), this service produces an XQuery, XSLT, or a SQL/XML query that imple-



www.manaraa.com

41

ments the transformation implied by the mapping [63]. The query and its associated

mapping are stored in the semantic catalog (for further reuse).

• Query Execution: For convenience, we also have a service that executes the queries

generated by the previous service. Given a query script and a set of input XML

documents (instances of the source XML schema used in the mapping, for example),

the service executes the query and returns the resulting XML document.

• XML Transformation: We also provide a service that allows the direct and scalable

execution of the mapping, as opposed to simply executing the query that implements

it. Based on the technology detailed in [75], this service takes as input a mapping

and the source XML instances and returns the target XML instance that is implied by

the mapping. As opposed to the Query Generation or Execution services, this service

neither produces nor executes a query; rather, this service uses a Java based engine

that optimally executes the mapping.

• Query Rewrite: An interesting application of mappings is the ability to rewrite (or

translate) target-side queries into queries that work on the source-side. This is useful,

for example, if the target side schemas are virtual and the actual data resides on the

source side. We use the query rewriting techniques detailed in [148] to implement

this service. Given a schema mapping and an XQuery over a target schema instance,

this service returns a rewritten XQuery over the source schemas in the mapping.

When the rewritten XQuery is executed against the source document instance, the

resulting document has the same structure as the intended output of the original target

XQuery.

• Schema Integration: Given a number of mappings between several schemas, this

service attempts to create an “integrated” schema that captures the unified concepts

of the schemas that are related by the mapping9. Schema integration is a core com-

9The service currently provides a ranked list of possible integrated schemas for the user to choose from.
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ponent of the presented thesis, and it will be independently addressed in more details

in Chapter 3.

2.3 System Usage

We present two example usage scenarios for the BioFederator, the first example describes

a collaboration scenario where geographically-distributed groups of scientists, working on

the same project, are using the BioFederator in coordinating and managing the data and

metadata required for their project. The second example describes a usage scenario that

involves using the BioFederator in accessing the metadata for a bioinformatics problem,

and then conducting distributed data processing using MR-LEGOS.

2.3.1 A Collaboration Scenario

This is an example collaboration scenario that can be achieved using the BioFederator. The

usage scenario involve three collaborating groups of scientists. Assume the groups are

associated with the three data sources shown in Figure 2.1 and located in the USA, Spain,

and Mexico respectively. The USA group is conducting experiments related to identifying

known genes, their chromosomal positions, etc. The team from Spain is doing experiments

on gene expression levels in different tissues, while the team from Mexico is concerned

about identifying transcription factors binding sites for different genes and the associated

transcription factors. Further, assume there is a fourth team in the UK that will do the

analysis of the collected data; their role is to collect and interpret data from different teams

and to discover new knowledge from the experiments.

• Initialization: Each site in the study independently sets up and configures its own

node. The configuration process includes the installation of any required software

and the deployment of required services. As nodes join the system, their coordinator
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services update lists of registered nodes, deployed services (both local and remote),

and subscribe to the “topics of interest”.

• Data Storage: Assume the USA group has conducted some experiments and col-

lected data that needs to be deposited into the system. The first step is to define a

suitable schema to represent this data, if one is not yet available. The next step is to

prepare the actual data instance conforming to the designed schema and choose the

associated parent topic (the topic should be defined among the hierarchy of topics

in the semantic catalog). Optionally, mapping from schema elements to CUI, con-

cept unique identifiers, can be provided to help construct the corresponding concepts

schema. Having the schemas and actual data, the USA team connects to their node

via an application server and starts uploading their data. The coordinator service del-

egates the repository service which handles the storage process (via VFS) and notifies

the synchronization service to update the local semantic catalog. Figure 2.3 shows

the uploaded schema Known Gene topic pointing to the schema definition file and

actual instances on the USA node. The synchronization service also notifies remote

synchronization services, which are subscribed to the topic associated with the newly

uploaded data. Note that the coordinator service may decide to store data on multi-

ple nodes based on quality of service requirements. Figure 2.3 shows an additional

instance saved on the Spain node.

• Schema Mapping: Assume now that the teams in Spain and Mexico have also up-

loaded their data. Thus, all three data sources have been loaded with data, which is

hosted on different nodes. Now the analysis team, i.e. the UK team, can start inter-

preting and analyzing the data deposited by the other three groups. However, they are

facing the problem of merging and integrating the data. Also, to efficiently analyze

the data, they would like to organize it according to a specific structure. Therefore,

the UK team constructs a new schema that captures the required data organization
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(the target schema in Figure 2.1). The BioFederator includes a powerful schema

mapping component that can create the mappings from the source schemas into the

new target schema. The UK team connects and downloads (via Java Web Start) an

application that allows the construction of Clio-based mappings. Source and target

schemas are loaded into the tool which shows their structure as a tree of schema el-

ements (very similar to how they are presented in Figure 2.1). Value mappings are

entered by drawing lines from source schema elements to target schema elements.

The schema mapping service processes the mapping specification and passes it to the

repository service for storage. The synchronization service updates the local seman-

tic catalog and notifies remote nodes about the new mapping. Figure 2.3 shows the

target schema “Gene Tissues scores” pointing to both the schema definition file and

the mappings file on the repository (UK node). When a decision is taken to construct

a materialized instance of the target schema, the mappings specifications file is read

and the source schemas TIDs are extracted.

• Query Processing: After constructing the new, federated target schema in the previ-

ous step, various analysis groups can start accessing and querying it. Different query

processing scenarios could arise based on the location of data (which can be either

locally or remotely stored), and whether the query is against a materialized version

of the data or not. If the data is not materialized then either a materialization or a

query distribution decision could be made by the coordinator service. Criteria for

such decision can be based on the frequency of the queries against the data sources,

and it can be locally materialized if the number of queries received exceeds a specific

threshold. For instance, imagine the UK-team is trying to answer the following query

using the federated target schema:
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Find a list of genes names and their chromosomal locations having an

expression level ≥ e in both heart and liver and they are regulated by

the same set of transcription factors.

The above query is written against the federated target schema. However, note that

the UK node does not have any data associated with this federated schema; all data

resides at the other nodes (a Global-Local-As-View (GLAV) scenario [54]). One al-

ternative could be data materialization (i.e., creating an instance of the target schema)

using query generation and execution services, and then executing the query against

this instance. Another alternative is using the query rewrite service as discussed

before.

2.3.2 A Data Query and Processing Scenario

We present a data query and processing scenario that can be achieved using the BioFeder-

ator. The usage scenario involves two collaborating groups of scientists. The first group

is conducting micro-array studies to calculate the gene expression profiles across different

types of human tissues. The second group uses the data deposited by the first group to

search for specific DNA patterns in house-keeping and tissue-specific genes, their objec-

tive is to study the characteristics of the DNA sequences for different genes and correlate

such characteristics with the types of genes and their expression profile.

• Initialization: Each site in the study independently sets up and configures its own

node. The configuration process includes the installation of any required software

and the deployment of required services. As nodes join the system, their coordinator

services update lists of registered nodes, deployed services (both local and remote),

and subscribe to the “topics of interest”.

• Data Storage: Assume the first group has conducted some experiments and col-

lected data that needs to be deposited into the system. The first step is to define a
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suitable schema to represent this data, if one is not yet available. The next step is to

prepare the actual data instance conforming to the designed schema and choose the

associated parent topic (the topic should be defined among the hierarchy of topics

in the semantic catalog). Optionally, mapping from schema elements to CUI, con-

cept unique identifiers, can be provided to help construct the corresponding concepts

schema. Having the schemas and actual data, the first team connects to their node via

an application server and starts uploading their data. The coordinator service dele-

gates the repository service which handles the storage process (via VFS) and notifies

the synchronization service to update the local semantic catalog. The synchroniza-

tion service also notifies remote synchronization services, which are subscribed to

the topic associated with the newly uploaded data. Since, the second team had sub-

scribed to this topic, their local semantic catalog will be updated with the newly

deposited data.

• Query Processing: The second group can now start accessing and querying the de-

posited data. For instance, assume the second group is trying to answer the following

query:

Find a list of genes names and associated DNA sequences file locations

where gene type = house− keeping.

The above query is written against the schema created by the first group. The query

will be executed and the results can be retrieved by the first group.

• Data Processing: After retrieving the results from the previous step, The second

group wants now to analyze the DNA sequences associated with every gene in the

result set, and to search for specific DNA patterns. However, the result set con-

tains thousands of genes, and retrieving and processing these amounts of data can be

time consuming. The second group decided to use MR-LEGOS to address this data

processing problem. The team wrote an MR-LEGOS job definition, that will read
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and process these gene sequences in parallel. The MR-LEGOS job definition used

a bioinformatics sequence localization Maplet, that basically reads a DNA sequence

file and calculate and write the locations of the patterns of interest. This Maplet was

written by a different research group, but the second group was able to reuse this

same Maplet. The group submits this job definition via the BioFederator application

server, the request is sent to the coordinator service of the local node, that forwards

it to the MR-LEGOS service.
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Schema Integration Approach

The need for a unified representation of the data to simplify the access to heterogeneous

data sources leads to the topic of schema integration. The input to this problem is a set

of source schemas together with attribute correspondences relating them. The output is a

consolidated target schema that constitutes a nonredundant unified representation of all the

data.

Schema integration has been an active research field for a long period of time and

continues to be a challenge in practice [22, 26, 96, 128, 111, 33]. This problem lies at the

core of many metadata applications, such as view integration, mediated schema creation,

and ontology merging. The spectrum of applications extends to web-service integration,

mashups and distributed web architectures [115].

In this thesis, we build on a number of previous approaches. The study in [33, 34]

proposed a schema integration framework that is based on enumerating and exploring mul-

tiple candidate integrated schemas based on considering all possible choices of merging

or not merging pairs of concepts that have matching attributes. This set of choices gives

rise to a space of candidate integrated schemas. This method goes on to explore this space

of integrated schemas in an interactive way, where user constraints are used to direct the

exploration of the solution space. In [55] a related approach utilizing top-k schema map-

48
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pings for managing the uncertainty in schema matching was proposed. The proposed top-k

algorithms presented in this study has some limitations that we address in this thesis.

In this thesis, we study a different exploration strategy that is based on ranking the

candidate schemas. As in [33, 34], we use graphs of concepts with has relationships to

represent, in a logical way, XML or relational schemas. A concept intuitively represents

one category of data (an entity type) that can exist according to that schema (e.g., an “em-

ployee”, a “dependent”, an “address”, etc.).

Our contributions are as follows. First, we develop a distance measure, which we call

concept distance (CD), that quantifies the similarity and coverage of concepts in different

schemas, our distance measure includes a directed component that allows us to quantify

the degree of coverage of one concept by another; and hence, say that one concept is likely

to be an extension or a sub-concept of a second concept.

As a consequence of developing a concept distance, we are then able to rank the candi-

date integrated schemas by giving more weight to schemas that combine the concepts that

have high similarity or coverage. The number of candidate schemas can be quite large, in

general, thus prohibiting the exploration of the whole solution space. Accordingly, we de-

vise a top k enumeration algorithm for generating the top candidate schemas without going

through the entire space. The complexity of the algorithm is analyzed showing enhance-

ment over previous approaches [55, 33, 34].

We note that, schema matching techniques for measuring undirected similarities be-

tween complex schema elements have been proposed [118, 93, 25]. However, in this thesis,

the emphasis is on the directed nature of our distance measure (CD) and how it is applied

in the context of schema integration. Furthermore, our method is complementary to schema

matching, since it maintains and uses the outcomes of schema matching in the ranking of

integrated schemas.

Schema integration seeks to derive a unified representation of the data, used to sim-

plify the access to heterogeneous data sources. The input to integration is a set of source
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schemas that relate to each other through correspondences or constraints. The output is a

consolidated target schema that constitutes a nonredundant unified representation of all the

data.

Although today the process of integrating schemas is partially automated, it is still

labor-intensive. In order to reduce the amount of manual intervention that is required from

users, we need to modify or avoid parts of the integration process that unnecessarily in-

crease the load on users. Let us follow the steps that generally need to take place while

combining two input schemas.

First, the input schemas are run through one or more schema matching algorithms [118,

93, 25] that return correspondences between the elements of the schemas. Such corre-

spondences typically have weights reflecting the confidence of the matchers that the two

elements are similar or have overlapping semantics. Moreover, the weights in each corre-

spondence direction can be different; thus, an element A can be similar to (or covered by)

an element B with weight w, while the element B is similar to (or covered by) element A

with weight w′, where w and w′ are not necessarily equal. We say in such situation that

there are two directed and weighted correspondences between elements A and B. In a sec-

ond step of schema integration, all the directed correspondences10 between two elements

are merged into one undirected correspondence with one aggregated weight. Correspon-

dences for which the aggregated weight is above a threshold are kept, while the rest are

discarded. Moreover, after the above pruning step, the weights of the remaining set of

correspondences are typically themselves discarded. In the third step, several alternatives

for combining the input schemas are available, based on the surviving correspondences,

and schema integration tools provide interactive means for the users to select a desired

integrated schema.

Consider the simple example in Figure 1.1. The two input schemas describe the struc-

ture of two elements: householder and member. These schemas are run through one or

10There may be more than two, with multiple schema matchers.
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more matching algorithms. For simplicity, assume in this example that atomic elements

that match are assigned correspondences weighted with a similarity of 1, in both direc-

tions. Correspondences that have weight 0 are not shown. The schema matching algorithm

then calculates the overall similarities between the non-atomic elements, by aggregating

in some way the similarities of the sub-elements. In this example, all the sub-elements of

member match the sub-elements of householder, and therefore member is covered entirely

by householder. Thus, we can conclude that there is a directed correspondence member→

householder with the similarity/weight of 1. On the other hand, the element householder

contains some sub-elements that are unique, and as a result the similarity of the directed

correspondence householder→ member is less than 1.11 One can see that the weights of

the derived correspondences give valuable hints about the coverage of one element by an-

other. Such information is more refined than just saying whether two elements match or

not. In particular, it can suggest that one element is likely to be an extension or represents

a sub-concept of the other element.

Let us revisit the second step in schema integration, where the results of the matching

algorithm are transformed into the undirected correspondences used for the generation of

the integrated schema. There are several ways to combine the elements of the two schemas,

but in this simplified example there are three natural choices: (1) merge the two root ele-

ments householder and member into one, (2) introduce an extension relationship (or refer-

ence) that will say that householder is an extension of member, or (3) do not combine the

two elements at all and just take their union. This is a simple example; in reality schemas

are larger and have more complex relationships among their elements. Thus, the space of

possible candidate schemas that can result from combining the input schemas can be quite

large.

The third step in the schema integration process is then concerned with identifying the

“best” integrated schema among these alternatives. In most methods, the alternatives are

11Section 3.3 will show one method for calculating the similarity measure for complex elements
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not created explicitly in the system, and the user must “drive” the generation of one inte-

grated structure. A good example of such system is described in [111]; in their method,

the expert provides a “template” of the integrated schema (also called a mapping model)

that effectively specifies the structure of the merged schema and provides the basis for ac-

cumulating all the attributes and the relationships from the input schemas. A different kind

of method, that is based on the explicit identification of the alternative schema structures,

is described in [34]. In their system, a user can systematically explore the alternatives and

narrow down, in an interactive way, the desired integrated schema. The advantage of such

method is that it is based on a systematic enumeration of the design choices and provides

more information to a user. The disadvantage is that the user can be exposed to many “un-

likely” schemas and has to explicitly rule out the unlikely choices. Figuring out a way of

directing user’s attention to the more challenging integration choices was left as an open

problem.

3.1 Overview of Our Approach

In this thesis we address the above shortcomings in the schema integration process as fol-

lows. (See also Figure 1.2.) First, we keep and exploit all the information generated by

the matching algorithms. In particular, we make use of both the direction and the weights

associated with the correspondences between elements. This information enables us to

define more refined relationships on the integrated schema. More importantly, this infor-

mation enables us to rank the integrated schemas, by giving higher priority to schemas

that combine the concepts with higher similarity or coverage. We are then able to devise a

polynomial-time, efficient algorithm that generates the top-k integrated schemas according

to the above heuristic.

As a consequence, the resulting system can avoid the generation of many unlikely

schemas and can thus minimize the user effort. As our user experiments show, the top-k
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schemas that we generate will automatically make the correct decisions in the “easy” (and

frequent) cases (i.e., concepts that are highly similar will be combined, while concepts that

are highly dissimilar will not be combined). Thus, the users can focus their attention on

the “difficult” cases while letting the system do the “tedious” part. In fact, we show in Sec-

tion 3.6.2 that the top-k algorithm can be effectively combined with the interactive system

of [34] as follows. The system first generates the (unconstrained) top-k schemas according

to the initial input (schemas and correspondences). The user then inspects some of these

schema and adds one or more constraints in the sense of [34], restricting the space of possi-

ble schemas. These constraints enforce decisions to be made on the “difficult” cases. Next,

the system reacts by generating the top-k schemas that satisfy the constraints. The process

continues, with the user possibly adding some more constraints, until a final schema is

obtained.

The top-k generation algorithm itself is non-trivial and we include the proof of its cor-

rectness. Furthermore, we show that the exact complexity of the algorithm is, in the worst

case, O(m1m2 log(m1m2) + k2), where m1 and m2 are the numbers of concepts in the

two schemas, respectively. We then show experimentally that the algorithm performs well

in practice, on real schemas.

Our method uses an extension of the framework of [34] for schema enumeration. As

in [34], we use graphs of concepts with has relationships to represent, at a higher-level

of abstraction, XML and relational schemas. A concept of a schema is a relation name

with an associated set of attributes and, intuitively, represents one category of data (an

entity type) that can exist according to that schema (e.g., an “employee”, a “department”,

an “address”). Concepts in a schema may have references to other concepts in the schema

and these references are captured by has edges (e.g., “employee” contains a has edge to

“department”).
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Figure 3.1: Two input source schemas and their attribute correspondences.

3.2 Model Formalization

Schemas and Correspondences Consider the two source schemas S1 and S2 shown in

Figure 3.1. The schemas are shown using a nested relational model [110] which can be

used as a common representation for both relational and XML schemas, in addition to

other hierarchical set-oriented data formats. This model is based on sets and records that

can be arbitrary nested.

The first schema represents families with their householders, dependents and incomes,

as well as the sources for such incomes. The top-level family element represents a set

of family records, each with three atomic components and one nested set, householder,

representing the householders for each family. The dotted arrows in schema S1 represent

foreign key constraints: an income has references to both a family and an income source,

while a dependent has a reference to a family. The second schema is a variation of the first

one, where corresponding to family, at the top level, we have a set of group records. Each

group record includes nested sets of addr history, member and benefit. As the example

illustrates, in general, the source schemas can overlap and also each source schema can
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have information that is not present in the other (e.g., salary, disability in the first schema,

addr history, med history in the second schema).

Figure 3.1 also shows correspondences (lines) between attributes of the two schemas.

The correspondences signify “matching” or “similar” attributes (i.e., that carry similar

data) in the two schemas. They can be manually specified or discovered through schema

matching techniques. Such techniques typically examine attribute types and properties,

and may also, involve calculating similarities based on available data instances for corre-

sponding attributes. Only correspondences between attributes (i.e., atomic components)

are considered, since attributes carry the actual data. Note that there can be attributes with

no correspondences and also attributes with multiple correspondences.

In general, some correspondences can have “stronger” similarity than others. Our

framework and, in particular, the calculation of distances between concepts that we shall

describe later, is capable of incorporating weighted correspondences (with weights between

0 and 1). However, for simplicity, in this example and later we shall assume all correspon-

dences have equal weights (of 1).

Given the source schemas and correspondences, our goal is to generate an integrated

schema that captures the source schemas, by taking the union of all their features while

avoiding redundancy (as captured by the correspondences). In general, there are many pos-

sible such schemas; in the following, we shall develop techniques for the ranked exploration

of the candidate integrated schemas.

As in [33, 34], our integration method is based on a more logical representation of

schemas that uses concept graphs.

Concept Graphs The objective of concept graphs is to abstract the physical organization

of schemas into a more logical view. In the following, let us assume U is a universe of

attributes. A concept is a relation name C associated with a subset of U (these are the

attributes of C). A concept graph is a pair (V, has) where V is a set of concepts and has
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is a set of directed edges between concepts. Whenever there is a has edge from A to B we

say that A “has a” B or that A “extends” B or that A is a “sub-concept” of B.

Relationship Multiplicity Intuitively, the meaning behind a has edge from A to B is

that every instance of concept A has a reference to exactly one instance of concept B. The

role of the has edges is to express that certain concepts cannot exist without other concepts

(i.e., they extend or depend on those concepts). Also, another way to view an edge A has

B is that it represents a many-to-one relationship from A to B, i.e., there can be zero or

more A instances with references to the same B instance. A many-to-many relationship

between A and B can be represented using a new concept C with two has edges pointing

to A and B, respectively. We note that, in general, there could be more than one has edge

between two concepts and, moreover, the graph can have cycles. The above discussion

clarifies how all possible relationship multiplicities can be represented using the proposed

concept graph constructs. Accordingly, such multiplicity doesn’t affect the behavior of our

proposed integration approach since the inputs to the integration step are the concept graphs

(as discussed in more details in Section 3.4).

Each schema, with its nesting and constraints, can be replaced by a concept graph. For

example, two concept graphs are shown in Figure 3.2 corresponding to schemas S1 and

S2. The non-dotted arrows that connect concepts (e.g., householder to family or income

to income src) represent has edges. For now, let us ignore the dotted lines connecting

concepts across schemas.

To understand how these concept graphs relate to the schemas, consider the concept

graph for S1. There, family and income src are top level concepts, with no outgoing has

edges; they represent standalone concepts that do not depend on anything else (according

to S1). In contrast, householder has a reference to family, since a householder element

cannot exist independently of a family according to the nesting in S1. Similarly, dependent

has a reference to family, based on the fact that dependent has a foreign key to family
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Figure 3.2: Concept graphs together with their distances and similarities.

in S1. Moreover, income has references to both family and income src, since an income

is associated (via foreign keys) with both a family and an income source in the schema S1.

There is an immediate algorithm that constructs a concept graph from a schema, based

on the nesting structure and based on the integrity constraints [34]. Specifically, a concept

can be associated with each set element in the schema (e.g., family, householder, etc.). Fur-

thermore, if the set element is nested under another set or has a foreign key into another

set, then a corresponding has edge must be added. The study in [33] also provides tech-

niques for translating concept graphs back into schemas. Accordingly, for the purposes

of our subsequent steps, we can assume that the schemas are given as concept graphs and

the schema integration problem is now a problem of combining such concept graphs into

a unified graph. In general, our integration method can be applied on any input concept

graphs and not only the ones constructed from schemas.
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3.3 Concept Distance

In this section we introduce Concept Distance (CD), a distance measure for concepts and

concept graphs. In essence, this is a variation of the well-known Hausdorff distance [100].

The CD measure is capable of quantifying the distance between concepts by incorporating

both the attributes within concepts and the references to other concepts. We also emphasize

the importance of both the undirected and directed versions of this measure, which will play

key roles in our method.

3.3.1 Motivation

The body of schema matching literature contains numerous techniques for calculating sim-

ilarities/distances between schema elements [118, 93, 25]. The emphasis in this study is

not on the proposed similarity measure, but on its directed nature. A number of exiting

techniques may be adapted to provide such asymmetry and hence, can be used in our ap-

proach.

The proposed distance measure has two main appealing characteristics that motivated

its utilization. First, it can be simply defined and calculated, and second, it is a straightfor-

ward extension of a well-known, widely studied and accepted distance measure between

sets, namely, Hausdorff distance.

A number of reasons motivated considering and studying such asymmetry in distance

calculation. The study in [55] presented a refined categorization for 1 : n schema elements

matchings. Such cardinality constraint may indicate that a single attribute in one schema

is replicated to several attributes in another schema (e.g., email in one schema vs. email

and confirmEmail in the other schema). Alternatively, such constraint may indicate that

an attribute in one schema is decomposed into several attributes in another schema (e.g.,

name in one schema is decomposed into firstName and lastName in another schema).

Using undirected similarity measures, there is no way of representing and capturing such
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alternatives. Introducing asymmetry and the notion of coverage in both directions provide

a possible way of capturing such information.

To exemplify the use of asymmetry in the context of schema integration, assume we

have two relations, Employee (id, name, salary) and Manager (id, name, salary,

bonus, dept, office, secretary). A undirected distance measure will calculate a single

value as a measure of the similarity between the two relations. A schema integration algo-

rithm will make a decision based on this single value, and hence, decide either to merge

those relations or to keep them separate. Note that, both decisions are not accurate and

a possible more realistic decision is obvious, namely, a partial merge, where Manager

becomes an extension for Employee. We’ll later show that our integration framework

is capable of making such decisions. This process has appealing characteristics from a

database normalization perspective. More details about this will be discussed later.

The directed nature of a similarly measure has favorable characteristics in a number

of application scenarios, as can be seen from the above discussion. And, if required, the

directed components can be combined into a single undirected measure. Hausdorff dis-

tance provides its directed components in addition to a number of well studied undirected

measures. We utilize and extend those measures in the following.

3.3.2 Distance Between Object Sets

We start by reviewing the basic notions related to the Hausdorff distance. We shall use

d(a, b) to denote the distance between two objects a and b; correspondingly, s(a, b) =

1 − d(a, b) represents the similarity between a and b. Both measures are directed, i.e.,

d(a, b) is not necessarily equal to d(b, a), and vary in the range [0,1]. The distance between

an object a and a set of objects B = {b1, ..., bNB
} is defined as:

d(a,B) = min
b∈B

d(a, b) (3.1)
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There are several ways to define the directed distance between two object sets A =

{a1, ..., aNA
} and B = {b1, ..., bNB

} as shown in [73]. The study in [48] proposed the

following directed modified Hausdorff distance:

d(A,B) =
1

NA

∑

a∈A

d(a,B) (3.2)

The complement of the above formula (i.e., the similarity s(A, B) = 1− d(A, B)) repre-

sents a measure that quantifies the degree to which the set A is covered by the set B. In

other words, the measure indicates the degree to which A can be considered a “subset” of

B. This similarity measure varies in the range [0, 1], where 1 denotes complete “inclusion”.

3.3.3 Distance Between Concepts

We now use a variation of the previously discussed notion of distance between sets of

objects to define distances between concepts. For the purposes of this definition, a concept

can be thought of as a set of attributes. However, the definition will necessarily be recursive

because it must take into account, for each concept, all its references. For this section, we

assume that for each of the input concept graphs, the has edges do not form a cycle. We

shall describe separately in Section 3.3.4 how we handle cycles.

Let α(X) denote the collection of attributes in a concept X , and let β(X) denote the

collection of concepts to which X has direct references (i.e., has edges). We define the

concept version of Equation (3.1) as:

d̂(a,B) = min
(

minb∈α(B)d(a, b),minB′∈β(B)d̂(a,B′)
)

(3.3)

and the concept version of Equation (3.2) as:

d̂(A,B) =
1

Nα + Nβ





∑

a∈α(A)

d̂(a,B) +
∑

A′∈β(A)

d̂(A′, B)



 (3.4)

where Nα and Nβ are the numbers of attributes and, respectively, the number of outgoing
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has edges of A, and where d(a, b) is 0 if there is a correspondence between the attributes a

and b, and 1 otherwise. Note that both of these definitions are recursive.

To better understand how this works, let us consider an example.

Example 1 Consider the concept graphs shown in Figure 3.2. Let us calculate the distance between the family concept and the

addr history concept.

We have α(family) = {fid, fname, address} and, α(addr history) = {start date, end date, address}.

Furthermore, β(family) = ∅ and β(addr history) = {group}.

The directed distances between the two concepts are evaluated as follows:

d̂(family, addr history) = 1

3
(d̂(fid, addr history) + d̂(fname, addr history) + d̂(address, addr history)) =

1

3
(d̂(fid, group)+ d̂(fname, group)+d(address, address)) = 1

3
(d(fid, gid)+d(fname, gname)+0) = 1

3
(0+0+0) = 0

d̂(addr history, family) = 1

4
(d̂(start date, family)+d̂(end date, family)+d̂(address, family)+d̂(group, family)) =

1

4
(1 + 1 + 0 + d̂(group, family)) = 1

4
(1 + 1 + 0 + 1

2
(d̂(gid, family) + d̂(gname, family))) =

1

4
(1 + 1 + 0 + 1

2
(0 + 0)) = 1

4
(1 + 1 + 0 + 0) = 0.5.

The first calculation in the example implies that the family concept is totally covered

by the addr history concept, since d̂(family, addr history) = 0. In particular, the simi-

larity of family to addr history is 1, according to the calculation. However, this result is

not quite satisfactory, since most of the coverage of family comes by using the attributes

of the group concept that addr history refers to.

Intuitively, when we compare family with addr history, we would like to decrease

the resulting similarity by taking into account the fact that the attributes fid and fname in

family are covered via a referenced concept and not directly by addr history.

To achieve this intended behavior, we modify the above computation as follows. As-

sume that we need to compute the distance between concepts A and B. Then, we shall

keep track of the number δA of has edges that we follow from A (with each recursive call

to Equation (3.4)). Similarly, we shall keep track of the number δB of has edges that we

follow from B (with each recursive call to Equation (3.3)). Then, whenever we reach the

fixed point in the recursion where we need the distance d(a, b) between attributes a and b

(see Equation (3.3)) we use a scaling factor κ to alter this distance, based on the difference

between δA and δB . More precisely, we take κ = α
α+δ

, where δ = |δA− δB| and where α is

an application dependent parameter. We then alter the similarity between a and b by using
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Figure 3.3: Behavior of κ using different α values

a weighted similarity formula ŝ(a, b) = κ × s(a, b). Accordingly, the weighted distance

between a and b is d̂(a, b) = 1 − ŝ(a, b). This number is then used in place of d(a, b) in

Equation (3.3).

The intuition behind κ is that we want to penalize the similarity between attributes

only when the attributes reside in concepts that have different depths relative to the original

concepts A and B that are being compared. This guarantees in particular that the distance

between two identical concept graphs will always be 0. For our example, when we calculate

the distance between family and addr history and reach the point of comparing fid in

family with gid in group, the depth difference is 1; therefore κ will have a value that is

strictly smaller than 1 (the exact value depends on the parameter α).

The behavior of κ against δ with different α values is depicted in Figure 3.3. It can be

seen that as α increases the penalty based on depth distances decreases, and vice versa.

Using the updated formula, and taking α to be 3, we recalculate the distance between

family and addr history in our example and obtain d̂(family, addr history) = 0.167.

A higher value for α would give a smaller distance.

In the later part of the study, we shall further need to combine these directed measures

(d̂ and ŝ) into undirected measures. The following formula can be used to produce a undi-

rected distance measure:
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D̂(A,B) = max(d̂(A,B), d̂(B,A)) (3.5)

We then define the undirected similarity measure between two concepts A and B as:

Ŝ(A,B) = 1− D̂(A,B) (3.6)

The study in [48] analyzed various ways of combining directed distances into a undirected

distance and reported better object matching performance when taking the maximum of the

directed distances as in Equation (3.5) (as opposed to taking the minimum, the average or

the weighted average). In the context of schema integration, we shall utilize the undirected

distance to define the cost of combining two concepts.

3.3.4 Distance Calculation

Here we present the procedure for calculating the complete set of distances between con-

cept graphs based on the previously defined CD measures. Assume we have n input

schemas (S1,...,Sn), each represented as a concept graph, and we are given a set of cor-

respondences that relate pairs of attributes across schemas.

To calculate the complete set of distances, we iteratively calculate the distance between

each pair of concepts across input graphs. The calculated distances (using α = 3) are

shown in Figure 3.2 using the dotted lines connecting concepts across schemas. From now

on we shall use the term distance edges for the edges that connect concepts in different

schemas. For each such distance edge we show the two directed distances right above the

edge and the undirected similarity right below the edge. For example, the two distances

d̂(family, group) = 0.333 and d̂(group, family) = 0 are shown as a pair above the

distance edge between family and group. Additionally, the maximum of the directed

distances is highlighted using a bold face font (this is the undirected distance D̂(A, B)

using Equation (3.5)).
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Table 3.1: List of distances between all concepts in S1 and S2
group member benefit med history addr history

family (0.333,0) (0.5,0.906) (0.5,0.906) (0.7,0.981) (0.167,0.656)

householder (0.958,0.25) (0.389,0) (0.722,0.5) (0.542,0.938) (0.889,0.563)

dependent (0.95,0.25) (0.267,0) (0.667,0.5) (0.45,0.938) (0.867,0.563)

income (0.917,0.25) (0.778,0.75) (0.361,0.313) (0.833,0.969) (0.778,0.562)

income src (1,1) (1,1) (0.667,0.75) (1,1) (1,1)

The distances between each pair of concepts across the input schemas are calculated.

Accordingly, there is a distance edge connecting each concept in S1 to each other concept

in S2. Table 3.1 shows this whole collection (using α = 3). However, for illustration

simplicity, Figure 3.2 only shows a subset of those edges, specifically it shows the dis-

tance edges connecting a pair of concepts A and B if there is at least one attribute corre-

spondence between attribute a and b, where a ∈ α(A), b ∈ α(B).

As an example, the calculated measures show that householder matches better (with

higher similarity) with member than with benefit. This is expected and it is something

we shall take advantage of to rank the integrated schemas. In particular, we shall give

higher weight to the schemas that combine householder with member than to the ones that

combine householder with benefit.

Handling Cycles Recall that our concept distances (Equations (3.4) and (3.3)) are recur-

sive. Thus, cycles in the input concept graphs can cause problems for the computation

of concept distances. Cycles arise naturally in practice (e.g., an employee has a depart-

ment, and a department has an employee which is the manager). To handle cycles in our

implementation, we incorporate a cycle detection technique, which keeps track of the vis-

ited concepts during recursion. When a cycle is detected, we loop in the cycle until the

difference between two successive calculations (∆d̂) becomes smaller than a considerably

very low value ǫ. From the recursive nature of the formulas there is a guarantee that ∆d̂

converges (i.e., ∀iter(∆iterd̂ > ∆iter+1d̂)), but since there is no guarantee of the rate of

the convergence, for performance issues we break the cycle after a predefined number of

iterations itermax.
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3.4 Overview of Schema Integration Method

This section presents an approach for constructing the integrated schema using the previ-

ously discussed directed distances. Figure 3.4 outlines the main steps, the n input schemas

are translated into concept graphs, then the directed distances between all pairs of con-

cepts across the graphs are calculated using simple attribute correspondences (as discussed

in Section 3.3.4). Finally, using a parameter λ, the graphs are combined into one unified

concept graph, which in turn can be translated into one integrated schema. The directed

distances and the parameter λ play a key role in the concept graphs combination procedure

as will be discussed in the following.

Figure 3.4: Schema integration workflow incorporating directed similarities

Based on directed distances, three different decisions for combining concepts are pos-

sible:

• merge: Two quite similar concepts can be merged into one, by taking the union of

their attributes and the union of their has edges. At the same time, we avoid redun-

dancy and collapse any corresponding (i.e. matching) attributes that may appear in

this union into a single attribute in the merged concept.

• no action: Two highly dissimilar concepts will be left intact.
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• Introducing a has edge: In some cases a merge decision will be quite aggressive, and

a no action decision will be inaccurate. In these special cases, we propose adding

a has edge connecting one of the concepts to the other. Specifically, assume that a

concept A is covered relatively well by another concept B but B is not covered well

by A (i.e., d̂(A, B) is low, but d̂(B, A) is high). This means that most attributes of A

are “covered” by B, but the reverse is not true. We then make B an extension of A

by adding a has edge from B to A and removing all the attributes from B that have

corresponding attributes in A. Note that the new has edge did not exist previously in

the input concept graphs but is something that is created by the schema integration

procedure.

From a database normalization perspective, this enriched set of combination decisions

helps minimize duplication of information and, in doing so, safeguards the database against

certain types of logical or structural problems, namely data anomalies [36]. Previous

schema integration approaches (e.g. [33, 34]) only considered merge and no action de-

cisions, resulting in an integrated schema that may suffer from such problems. The use

of directed distances together with the incorporation of partial merge decisions (i.e., has

edges) help avoiding these problems.

3.4.1 Control of Combination Decisions

To control the combination process, a parameter λ is used to guide combination decisions.

Assume two concepts A and B, where the directed distances between them are d̂(A, B) and

d̂(B, A). If the distances in both directions are smaller than λ, then we choose to merge

the two concepts. If d̂(A, B) ≤ λ, but d̂(B, A) > λ, then we choose to introduce a has

edge, where B becomes an extension of A. Finally, if distances in both directions are larger

than λ then a no action decision will be the remaining option. The rules for merge and

has decisions are summarized in Table 3.2.

Figure 3.5 shows an example, where at the top we show concept householder from
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Table 3.2: merge and has Decisions
Rule Condition Decision

1 d̂(A,B) ≤ λ AND d̂(B,A) ≤ λ merge

2 d̂(A,B) ≤ λ AND d̂(B,A) > λ B has A

3 d̂(A,B) > λ AND d̂(B,A) ≤ λ A has B

4 d̂(A,B) > λ AND d̂(B,A) > λ no action

schema S1 and concept member from schema S2 together with the edge connecting them

and their directed distances, d̂(householder, member) = 0.389, while d̂(member, householder)

= 0. If we choose λ to be 0.6, a merge decision will be taken and the result will be a single

table for members and householders. This may not be fully correct because there may be

family members who are not householders. If we take λ to be 0.3, a has edge will be in-

troduced connecting householder to member; this will result in a schema with two tables

with a foreign key as shown in the figure, where, attributes in householder having corre-

sponding attributes in member were removed. Note that a no action decision would have

also resulted in two tables but with redundant information.

Figure 3.5: merge and has decisions

3.4.2 Lambda Tuning

As seen from the rules for combining concepts (see Table 3.2), the choice of the parameter

λ is critical, as it directly affects the generated schema. Figure 3.6 shows the combined
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concept graph when λ = 0.47. Note that family and group are merged into one concept,

as well as income and benefit; moreover dependent, member and householder are also

merged. Figure 3.7 manifests the effect of introducing a has edge from householder to

member rather than merging householder with member when λ = 0.37. (Note that

dependent is merged with member, so the has edge from householder goes into the merge

of member and dependent). Figures 3.6 and 3.7 also show the corresponding integrated

schemas.

Figure 3.6: Combined concept graph and schema, for λ = 0.47

Note that, as λ increases, the number of distance edges that are used (either for merge

or to add a has edge) will also increase, thus resulting in combining more concepts and

creating a more “compact” integrated schema. In the extreme case of λ = 1, all the

distance edges will be used and all concepts will be merged into one flat concept. As

previously discussed, from database normalization perspectives, this unguided increase of

λ is unsatisfactory. On the other hand, decreasing λ will limit the number of distance edges

that are used (either to merge or to add a has edge) to the ones connecting tightly related

concepts, thus, resulting in a relatively “fragmented” integrated schema. In the extreme

case, when λ = 0, only totally covered or identical concepts will be combined. Tuning
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Figure 3.7: Combined concept graph and schema, for λ = 0.37

λ can be thought of as a tradeoff between precision and recall, decreasing λ increases

precision at expense of recall and vice versa.

Intuitively, decreasing λ is appealing from database normalization perspectives. How-

ever, decreasing λ excessively is impractical and may result in ignoring edges connecting

relatively similar concepts and hence, missing combining such concepts. So, the question

is how can we decrease λ without affecting the edges used in the combination process.

3.5 Top-K Candidates

In Section 3.4 we described the basic approach for constructing an integrated schema using

directed distances. The λ parameter was used to control the integration decisions, and the

question of efficient tuning of λ was posed. In this section we address this question and

present a revised approach that offers: 1) A systematic and efficient way of enumerating the

top-k candidate integrated schemas, 2) using such candidates for automatic λ tuning, and

3) presenting the best integrated schema utilizing a stability analysis technique previously
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proposed in [55] in the context of schema matching. The main steps of the approach are

outlined in Figure 3.8, the gray boxes highlight the newly added steps. After constructing

the concept graphs and calculating the directed distances between concepts across graphs,

we consider the enumeration of candidate integrated schemas and formalize the notion

of an assignment and its associated cost function. Then, a top-k enumeration algorithm

follows. The top-k candidates are used to tune λ, they are also used in calculating the

best assignment employing stability analysis. The best assignment is used to construct

the integrated concept graph, which, in turn, will be used to construct the final integrated

schema.

Figure 3.8: Revised workflow incorporating top-k candidates and stability analysis

3.5.1 Candidates Enumeration

Consider all possible integrated schemas that can be generated based on the exiting dis-

tance edges. For each of these edges, we consider the alternative of either using that edge

(to either merge the concepts or to add a has edge) or not using it at all. To consider all the

alternatives for all the edges, we use bit assignments as follows. An assignment vector A

is a fixed-sized, ordered vector of bits, where each bit corresponds to one distance edge.
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When a specific bit is set to 1, this means that the corresponding distance edge must be

used. On the other hand, if it is set to 0, then the corresponding distance edge will not

be used. For each assignment, the input concept graphs are combined into an integrated

concept graph by using the procedure described in Section 3.4 (by considering only the

edges for which the bit is set to 1). Different assignments give rise to different ways of

combining the concepts, thus yielding different candidate integrated schemas.

As an example, consider the concept graphs in Figure 3.2. Assume that the 8 dis-

tance edges shown in the figure are our whole set of distance edges. The assignment

vector can be represented as [X7 X6 X5 X4 X3 X2 X1 X0] (the variables are also shown

above the corresponding distance edges in the figure). There are 28 possible assignments;

Figure 3.9 shows an example assignment [00001111] dictating the usage of the distance edges

corresponding to only X0, X1, X2 and X3.

In general, a naive enumeration of all assignments is highly ineffective due to their

exponential number. The method developed in [33, 34] explores the space of assignments

in an interactive way, where user constraints are used to direct the exploration of the space

in an efficient way. Here, we adopt a different exploration strategy that is based on ranking

the candidate schemas. Our first step is to aggregate the cost of an assignment (and of the

resulting schema) from the individual distances of the edges in the assignment. Once we

establish such cost, we develop a top k algorithm that can generate the first k schemas in

ranked order.

3.5.2 Cost of an Assignment

In order to compute an aggregated cost for an assignment, we need to consider first the costs

associated with each individual decision of whether to use or not to use a distance edge.

Assume distance edge E connects concepts A and B. If E is used (i.e., its corresponding

bit in the assignment is set to 1) then A and B will be combined (either by merging the

concepts or by introducing a has relationship). Intuitively, the cost (or penalty) incurred
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by taking the decision of using E should be proportional to the distance between the two

concepts: costE = θ1 × D̂(A, B). In other words, if two concepts are far apart (according

to D) and we decide to combine those two concepts then this decision should be given

a high cost (and vice versa, if the concepts are close to each other). Conversely, if E is

not used (i.e., its corresponding bit in the assignment is set to 0). We take the cost (or

penalty) incurred by this decision to be proportional to the similarity between the concepts:

costE = θ2 × Ŝ(A, B) The proportionality constants θ1 and θ2 can be used to give more or

less weight for specific edges (in a user interaction mode). For the sake of simplicity, we

shall assume that there is no such preference and θ1 = θ2 = 1.

Now we can define the aggregated cost for an assignment. Given an assignment A

having a set K1 of used edges and a set K2 of unused edges, we define the cost of A to be:

cost(A) =
1

n





∑

E∈K1

D̂(A,B) +
∑

E∈K2

Ŝ(A,B)



 (3.7)

where n is the total number of distance edges in A. Note that cost(A) is always between 0

and 1, inclusive.

Figure 3.9 shows an example assignment Ai = [00001111] for the concept graphs of

Figure 3.2. Applying Equation (3.7), cost(Ai) = 1
8

[ (0.267 + 0.333 + 0.361 + 0.389) +

(0.344 + 0.333 + 0.278 + 0.25) ] = 0.319.

Figure 3.9: Assignment cost calculation

We note that the cost model we adopt here is a very simple one, and it is quite con-

ceivable that it can be refined to account for additional factors. For example, it could be

further refined to cost differently the two ways of using an edge (i.e., merging vs. adding

a has relationship) or it could be refined to account for how the schemas will be actually
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used (by taking user constraints or query workloads into account). Nevertheless, the overall

framework does not depend on the concrete choice of a cost function, as this cost function

is a pluggable component. Given a cost function, the following top k algorithm is able to

find the best schemas (according to the cost function).

3.5.3 Top-K Algorithm

In general, assignment problems can be solved using, for example, the Munkres algorithm

[99] or other related top-k algorithms [67, 101]. These papers show that assignment prob-

lems can be generally solved in polynomial time, in cases that satisfy a (1 : 1) mapping

cardinality constraint, which means in our terms, that one concept in one schema can only

be combined with at most one concept in the other schema. This is a serious limitation

since, in many practical cases, a concept in a schema can have correspondences (and can

be combined) with multiple concepts in another schema. The study in [55] proposed for-

malizing schema matching problems as assignment problems. It gives an algorithm that,

given two input schemas and a set of similarities between their elements, generates the top-

k schema matchings, in cases where valid solutions satisfy a (1 : n) mapping cardinality

constraint. This constraint means that a single element in the first schema can be mapped

to multiple elements in the second schema, but a single element in the second schema can

only be mapped to a single element in the first schema. This assumption is also a strong

limitation and prevents us from using such algorithm.

We now start describing our algorithm for top-k enumeration. The initial step is to

calculate the first, optimal assignment A1, which minimizes the cost. Let ei be the corre-

spondence represented by bit i in the assignment. Let Ŝi and D̂i = 1−Ŝi be the (undirected)

similarity and distance associated with ei. Based on the cost formulas in the previous sub-

section, if Ŝi ≥ D̂i, the cost of including ei in an assignment is smaller than the cost of

excluding it. Thus, the optimal assignment (of minimum cost) must necessarily have the

bit i set to 1. Conversely, if Ŝi < D̂i, the cost of including ei in an assignment is larger than
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Figure 3.10: (a) Initial steps in the top-k enumeration process, (b) top 6 assignments

the cost of excluding it. Thus, the optimal assignment must necessarily have the bit i set to

0. As it can be seen, it is immediate to derive the optimal assignment A1. For our example,

the assignment shown in Figure 3.9 is the optimal assignment.

The challenge is to efficiently derive the next k − 1 best assignments. That is, given

the jth assignment, we need to decide which bits to “flip” in the assignment in order to

obtain the (j + 1)th best assignment. Let us define ∆fi = |Ŝi − D̂i|, to quantify the

cost impact of flipping (i.e., complementing) the bit i from its current value in the optimal

assignment A1. Let us define the vector ∆f = [∆fn−1, ..., ∆f0]. For our example, the top

section of Figure 3.10(a) shows the optimal assignment (in the line with k = 1) and the

vector ∆f (in the next line). For each i, ∆fi represents the increase in cost with respect

to cost(A1) if the bit i (i.e., variable Xi) in A1 were to be flipped. We next sort the ∆f

vector in increasing order. Let us denote the sorted vector as ∆fs. Moreover, a vector Map

keeps the association (after sorting) between elements of ∆fs and the variables Xi. See

Figure 3.10(a) for an illustration of Map and ∆fs.

In order to generate the next best assignments, we explore, incrementally, modifications

of the original assignment A1. The incremental modifications are based on the sorted vector

∆fs of cost increases. The goal, at each iteration, is to discover the next assignment that

minimizes the increase in cost (as compared to the current assignment). To give an intuition,

let us look at Figure 3.10(a) again. It can be seen that the 2nd best assignment (shown in

the line for k = 2) can be obtained by just flipping the bit X3, since this will give the least
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cost increase (according to ∆fs). Next, to compute the 3rd best assignment, we need to

change the variable with the next cost increase (i.e., X2) and leave X3 unflipped (relative to

A1). To obtain the 4th best assignment, we have two choices. We could either flip variable

X4 (which is the variable with the next cost increase) and leave the rest as in A1, or flip

both X2 and X3. In order to decide which choice gives the smaller cost increase, we need

to actually calculate the costs for the two choices (i.e., 0.312 vs. 0.278 + 0.054) and take

the minimum.

As the example suggests, the key ingredients behind our algorithm are the following:

• To find the top k assignments, it is enough to consider combinations of flipping or

not flipping the lower k − 1 variables in the Map vector.

• Furthermore, at any point in the algorithm, there are at most two new alternatives to

be considered. To discover the next solution, it is enough to compare the new alter-

native(s) with the best candidate in a candidate set. The assignment with minimum

cost increase becomes the next solution, while the rest will be re-evaluated in the

next iteration.

In the algorithm, we make use of bit vectors of the form F = [fn−1, ..., f0] to keep

track of the bit flips as compared with the best assignment A1. Each vector F encodes

an assignment as follows. If fi = 1, then the variable in the ith position in the Map

vector is flipped relative to its value in A1. Alternatively, if fi = 0 then the same variable

is left unchanged. The algorithm iteratively outputs the top-k assignments in increasing

cost in the form of bit vectors F = [fn−1, ..., f0]. The actual assignments can be found

immediately based on F , Map and A1.

Additional Vector Notation When describing a bit vector F , it is convenient to drop the

most significant bits that are set to 0. We refer to such a representation as the condensed rep-

resentation. We denote by len(F ) the size (or the length) of the condensed representation

of F . As an example, the condensed representation of F = [00000010] is [10]; moreover,
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len(F ) = 2. (By convention, we take the condensed representation of a bit vector with all

zeros to be [0].) We also make use of a “reverse” operation that expands a bit vector. If F

is a bit vector in condensed representation, and m is such that len(F ) ≤ m, we denote by

em(F ) the expansion of F on m bits. Such expansion is obtained by adding 0’s in front of

the leading 1, so that the size of the resulting vector is m. Finally, we use ‖ to denote the

concatenation of a bit vector in front of another. For example, [1] ‖ [01] = [101].

Algorithm 1 Enumerating the top k assignments

1: soln⇐ {[0], [1]}
2: cand⇐ {[10]}
3: for 3 ≤ i ≤ k do

4: c = min(cand)
5: Output c as the ith best solution

6: Remove c from cand
7: Add c at the end of soln
8: Write c, in condensed representation, as [1] ‖ em(s). (Here, len(c) is m + 1, and s

is the condensed representation of the “lower” m bits of c).

9: Let nextm(s) be the first element s′ in soln that is after s and satisfies len(s′) ≤ m.

10: if nextm(s) exists then

11: candidate = [1] ‖ em(nextm(s))
12: Insert candidate in cand
13: end if

14: if s = [0] then

15: candidate = [10] ‖ em(s)
16: Insert candidate in cand
17: end if

18: end for

Algorithm 1 gives the exact steps for enumerating the top-k assignments. The two data

structures used are: a list “cand” of candidates and a list “soln” of solutions generated

so far. The list cand is implemented as a priority queue, so that its operations (insertion,

deletion, and taking the minimum) have all logarithmic complexity.

In lines 1 and 2, soln is initialized with the top 2 assignments, in sorted order, and

cand is initialized to contain the 3rd best assignment.12 The for loop (lines 3-18) iteratively

outputs the ith best assignment starting from i = 3. In lines 4-7, the candidate c of minimum

12Recall that we manipulate F -vectors.
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cost increase in cand is output as the ith solution, and then moved from cand to the end of

soln.

In lines 8 to 17, two new possible candidates are calculated based on the current best

solution c and the solutions found so far. The bit vector c, assumed to have m + 1 bits, is

first decomposed into two parts: the highest significant 1, and the remaining lower m bits

whose condensed representation is denoted by s. Next, we look for nextm(s), which is

the first vector s′ in soln that succeeds s (i.e., has higher cost) and satisfies len(s′) ≤ m.

In particular, s′ is the first higher cost solution (after s) that can still be written on m bits.

Note that nextm(s) may not necessarily be the immediate successor of s. Also, note that

nextm(s) may not exist.

In lines 10-13, if nextm(s) is found, a new candidate is generated and added to cand.

This new candidate is obtained by replacing s with nextm(s) within the lower m bits of c.

Additionally, in lines 14-17, if all the lower m bits of c are 0, a new candidate is generated

by advancing the leading 1 by one position. Intuitively, these are the two possible ways of

generating new candidate assignments, while minimally increasing the cost.

Example Let us follow the first three iterations of the algorithm for our running example

(see Figure 3.10 again). The solution set soln is initialized with {[0], [1]}, and the candidate

set cand is initialized with {[10]}.

• candidate c = [10] is the only entry in cand and, hence, it is the best. Thus, c

becomes a solution (the 3rd), and it is moved from cand to the end of soln. Two new

candidates are placed into cand: [11], obtained by replacing [0] in c with next1([0]) =

[1], and [100], obtained by advancing the leading 1 in c. The candidate set is now cand

= {[11]0.332, [100]0.312}, where we write as a subscript the associated cost increase for

each candidate (based on ∆fs).

• the best candidate c is now [100], since 0.312 < 0.332. Thus, c becomes the 4th

solution, and it is moved from cand to soln. As before, two new candidates are

placed in cand: [101], obtained by replacing [00] in c with the expansion on 2 bits of
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next2([0]) = [1], and [1000], obtained by advancing the leading 1 in c. The set cand

is now {[101]0.366, [1000]0.334, [11]0.332}.

• the best candidate c is now [11]. This entry is removed from cand and becomes

the 5th solution. Note that c, in this case, will not generate any new candidates.

First, there is no next1([1]) in soln, since all solutions following [1] have len greater

than 1. Moreover, c does not pass the test in line 14. The candidate set becomes

cand = {[101]0.366, [1000]0.334} (and [1000] will become the 6th solution in the next

iteration).

Algorithm Analysis

Algorithm Correctness We can prove the correctness of the top-k algorithm by induction.

For simplicity of the presentation, we shall assume that there are no ties among the as-

signments (i.e., no two assignments have the same cost). If ties occur, the same proof of

correctness applies but with slight extensions (essentially, we must define a certain order

among the assignments with the same cost, and then observe that the algorithm outputs ties

in that order).

For k = 1, 2, and 3, the algorithm is correct by initialization. For k > 3, assume

that the algorithm has generated the first k − 1 solutions F1, · · ·Fk−1. We show that the

solution with the k-th best cost, Fk, must be in the candidate set cand at the beginning of

the k-th iteration of the algorithm. Therefore, Fk will be generated as the k-th solution by

the algorithm. Let us write Fk, in condensed representation, as [1] ‖ em(s). We assume

here that len(Fk) is m+1, and s is the condensed representation of the lower m bits of Fk.

There are two cases to consider.

Case 1: len(Fk) > max1≤i≤k−1(len(Fi)). Since Fk is the first (i.e., lowest-cost) solution

of its length, it must be that s = [0]. (We make use here of an obvious monotonicity

property on assignments, and of the assumption of no ties.) Consider now the assignment

c = [1] ‖ em−1([0]), which is the same as Fk except that the leading 1 occurs in a position
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that is lower by one. Since cost(c) < cost(Fk), it must be the case that c is one of the

previous k − 1 solutions. Hence, in an earlier iteration, the algorithm must have added Fk

to cand (lines 14-17).

Case 2: len(Fk) ≤ max1≤i≤k−1(len(Fi)). Thus, there is an earlier solution Fl such that

len(Fk) ≤ len(Fl). In turn, this implies that there is a solution Fi (with i ≤ l) such that

len(Fi) is exactly the same as len(Fk). This can be shown by observing that solutions do

not “skip” any length number, that is, if there is a solution of length p then there is another

(lower-cost) solution of length p−1. Essentially, the length can be reduced by 1 as follows:

a vector of the form [10 . . .] can be replaced by [01 . . .], while a vector of the form [11 . . .]

can be replaced by [01 . . .]. In each case, the resulting vector has a lower cost.

Since len(Fi) = m + 1, it must be that Fi is of the form [1] ‖ em(si) where si is some

bit vector in condensed representation such that len(si) ≤ m. Note that both s and si must

be among the top k − 1 solutions, since their respective costs are smaller than Fk and Fi.

Furthermore, since cost(Fk) > cost(Fi), and Fk and Fi are identical on the leading bit,

it must be that cost(s) > cost(si). This implies that si appears in soln before s. Let s′

be the nearest solution in soln that precedes s and has length smaller than m. We know

that such s′ exists, because si itself precedes s and has length smaller than m. Note that

nextm(s′) = s.

Let us now form the vector F ′ = [1] ‖ em(s′). Since cost(s′) < cost(s), we have that

cost(F ′) < cost(Fk). Thus, F ′ is one of the top k − 1 solutions. This fact, combined with

the fact that nextm(s′) exists, implies that in an earlier iteration, the algorithm must have

added [1] ‖ em(nextm(s′)) to cand (lines 10-13). But this last vector is precisely Fk. This

concludes the proof.

Complexity Analysis First of all, the size of cand is O(k). This is because at each iteration,

we take out one element and put at most two new candidates. So, the list increases by at

most 1 at each iteration. Then, at each iteration, the complexity of finding the candidate

with minimum cost (line 4) is O(log k) (given a priority queue implementation for cand).
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Determining nextm(s) requires O(k) in the worst case, since it requires traversing the soln

list, and the size of soln is at most k.

So, each iteration takes O(k) and there are O(k) iterations. Hence, the overall com-

plexity is O(k2). Since the initial time to sort the ∆fs vector is O(n logn), we obtain an

overall complexity of O(n log n + k2).

Note that the cost of obtaining the next solution is only O(k) at each step. This is

important, since it is often the case that we do not need to generate all the top k solutions

at once, but rather generate them lazily, one by one, as the user interaction demands it. In

such case, the time to obtain the next solution is the important one.

3.5.4 Lambda Tuning Revisited

In Section 3.4.2, the question of efficient λ tuning was posed. Here, this question is revisited

and an answer is proposed. We previously highlighted that tuning λ can be viewed as

a tradeoff between precision and recall, and in fact, it is a function of how precise the

attribute correspondences were calculated. Typically, such attribute correspondences may

have been calculated using simple attribute-to-attribute schema matching techniques that

examine types and properties of attributes. Also, this may involve calculating similarities

based on available data instances for corresponding attributes. Accordingly, such process

is inherently imprecise. For example, social security number can be represented as a string

type in one schema but as an int type in another. Moreover, the number of available data

instances for corresponding attributes can highly affect the overall precision, typically, a

large number of available data instances will increase precision, and vice versa.

So, a good λ value for a specific integration problem may not be as good for another

problem. From database normalization perspectives, it is appealing to decrease the value

of λ, however, such decrease, may risk loosing some edges that are incorporated in the

integration process. A straight forward approach for addressing such problem is to examine

a “representing sample” for all distance edges and tune λ accordingly. Having calculated
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the top-k candidates, a possible choice for such sample is the set of all edges that were used

in any of the top-k assignments.

Assume E represents the set of distance edges used in any of the top-k assignments,

denote the two directed distances associated with any of those edges as d̂1 and d̂2. A

possible way for setting λ is: 1) Iteratively scan all the distance edges belonging to E, 2)

record min(d̂1, d̂2) and add this value to a list L, and finally, 3) set λ to the maximum of

the values in L.

The above procedure guarantees that the edges used in any of the top-k assignments

are taken into consideration when setting λ. Note that, this is the minimum possible value

for λ that can be obtained without ignoring any of those edges. Edges that don’t belong

to E are quite extreme edges that can be safely ignored in the process of tuning λ. Those

extreme edges are connecting quite unrelated concepts that are unlikely to be included in

the integration process.

Note that, the number of the top candidates k may affect λ tuning. Specifically, in-

creasing k may increase λ if any of the additional candidates uses a new edge having

min(d̂1, d̂2) > λ. So, the problem of tuning λ was replaced by a new problem of tun-

ing k. However, the stability analysis discussions in subsection 3.5.5 and the experiments

analysis in Section 3.6 will provide an adequate argument supporting such problem trans-

formation. From practical perspectives, it’ll be shown that choosing a value for k is easier

that choosing a value for λ.

3.5.5 Stability Analysis

In subsection 3.5.3, we efficiently calculated the top-k candidate assignments, which in

turn, are translated into the top-k candidate integrated schemas. In an off-line setting, those

candidates can be presented to the user for a manual choice of the correct assignment.

This off-line setting is useful in some applications. However, for obvious reasons, this

manual setting is highly inefficient in dynamic environments. Specifically, the introduction
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of the semantic web, mashups and web-services integration applications underscore the

importance of providing an automated integration solution. In this section we employ a

stability analysis heuristic previously proposed in [55] and tested on real and synthetic

data. The top-k assignments are analyzed and a best assignment A∗ is proposed as a single

solution, and hence, translated into a single integrated schema.

Assume E represents the set of distance edges used in any of the top-k assignments.

The stability analysis heuristic proposes counting how many times an edges in E appears

in the top-k assignments. An edges that appears a sufficient number of times will be part

of A∗, otherwise, it will be ignored. A threshold is used to quantify the sufficient number

of times an edges has to appear in the top-k assignments. More discussion about this will

be presented in the experiments in Section 3.6.

3.6 Experiments

We evaluate our integration approach using a number of real world and synthetic scenarios.

In Section 3.5 we showed that our top-k generation algorithm has low complexity, which

makes it amenable for an efficient implementation. Complexity analysis showed that our

schema enumeration approach significantly outperforms naive enumeration and previously

presented approaches [33, 34, 55]. In this section we verify this on our implementation; we

analyze the performance of generating the top-k schemas for a number of scenarios, and

also evaluate the usability and effectiveness of the integration process based on a user study.

Furthermore, we evaluate the tuning method for the integration parameter λ, by varying the

number of top configurations and analyzing the effects on the final results. Our system is

implemented using Java and the experiments were carried on a PC compatible machine,

with Intel Core Duo processor (1.8GHz), running Windows XP and JRE 5.0.
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3.6.1 Real Integration Scenarios

We test the performance and effectiveness of our method in a number of integration scenar-

ios. The schemas used in these scenarios are: a relational and an XML schema representing

gene expression experimental results (GENEX); two relational schemas from the Amal-

gam integration benchmark [94] for bibliographic data; two variations of the XML schema

for the DBLP bibliography; the first schema in the Amalgam benchmark and one of the

previous DBLP schemas; two variations of xml schemas, representing information about

organizations, departments, projects and funding; two fragment schemas from the health

insurance domain, representing families, householders, dependents and benefits; two vari-

ations of schemas, representing information about students, courses and enrollment; and a

scenario for a 3-way integration where three XML schemas are used, each with a differ-

ent nesting structure, representing information about departments, projects and employees,

two XML schemas representing enterprise business objects (such as orders, and customers

related to orders), one from SAP and the other one from the IBM WebSphere Business

Integration (WBI) suite; a relational and an XML version of the Mondial database [97].

Figure 3.11 shows, for each scenario, the number of input concepts, the number of dis-

tance edges, as well as the number of input schemas. The top 10 assignments for each

scenario are also shown together with the associated cost and the time needed to evaluate

the assignment. Note that, we denote by assignment edges the subset of distance edges

connecting concepts having at least one attribute correspondence. For presentation sim-

plicity, The shown assignments use the assignment edges and not the whole set of dis-

tance edges (e.g., for the Amalgam-DBLP scenario, we have 210 distance edges but

only 10 assignment edges). The bottom row shows the recommended λ value for each

scenario based on the evaluated top-k assignments, this value will be used in the com-

bination process to construct the integrated schema corresponding to an assignment. As

previously discussed, the candidate schemas can be enumerated in a user interactive fash-



www.manaraa.com

84

ion, or a single schema can be automatically generated based on the stable edges in the

top-k assignments.

Figure 3.11: Results for different real world integration scenarios

To understand the shown assignments and what concepts are combined by each, Fig-

ure 3.12 shows, for each scenario, the set of assignment edges, and the corresponding di-

rected distances for each, for example, the first row shows the ordered pair (project,fund)

corresponding to the most significant bit in the assignment, and the ordered pair (0.667,0.750)

as the directed distances. This means that the most significant bit in an assignment for the

Dept-Org scenario corresponds to the distance edge connecting the concept project in the

first schema to the the concept fund in the second schema, and, d̂(project, fund)= 0.667,

while d̂(fund, project)= 0.750.

Figure 3.13 shows the characteristics of these scenarios, including the number of con-

cepts, the number of correspondences between attributes, as well as the number of non-zero

correspondences between concepts (i.e., correspondences between concepts that have non-

zero similarity in at least one direction). In the fifth column of the table, we give the total

number of integrated schemas (i.e., the size of the space of candidate schemas) in each sce-

nario. The last portion of the table indicates the average time per generated schema when

using the top-k schema integration method. This time is obtained by running the top-k

algorithm for several values of k and then reporting the average time between two consec-

utive solutions (for each fixed k). Although the numbers of concepts and correspondences

in these scenarios are not large, the schemas are not necessarily trivial. For example, the
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Figure 3.12: Assignments Edges and the corresponding distances for the integration sce-

narios in fig. 3.11

Integration Attribute Source ConceptTotal Integr. Time/schema (ms)

Scenario Corresp.ConceptsCorresp. Schemas (top-64)(top-128)(top-256)

Genex 31 13 6 64 0.50 n/a n/a

WBI-SAP 46 22 7 128 1.70 2.44 n/a

Mondial 74 49 18 >3000 1.43 1.72 2.13

Amalgam 16 24 12 >3000 0.95 1.12 1.43

Amalgam-DBLP 26 29 11 2048 0.85 0.98 1.10

Dept-Proj-Emp 16 10 8 192 0.22 0.25 n/a

Figure 3.13: Evaluation on real schema integration scenarios.

SAP schema is split over 15 files with concepts having tens (20-50) of attributes and multi-

ple levels of nesting. Moreover, many of the concepts are referred to from other concepts.

One reason for why there is only a small number of concept correspondences (seven in the

WBI-SAP integration scenario) is that not every concept in one schema has a match in the

other schema. Nevertheless, the size of the space of candidate schemas in these scenarios

is sufficiently large to illustrate the need for an effective tool to explore all the integration

choices. For larger schemas, the effectiveness of our top-k enumeration method would be-

come even more apparent. As it can be seen, the average time to generate the next schema

is consistently low, even when k is large (e.g., 128). Note that in practice, in an interactive
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system, we will seldom need to generate such a large number of schemas (see also the next

subsection).

We also observed from the experiment that the top schemas generated by the algorithm

make the “correct” decisions for a large fraction of the bits (or, variables) in the assignment

vector. In particular, the highly similar concepts (with many attributes in common) are

combined, while the highly dissimilar concepts are not combined. In a sense, these are the

“easy” decisions that an expert may often agree with. This leaves out the “difficult” cases,

involving groups of “ambiguous” concepts for which any combination may be possible.

To illustrate, consider the Mondial scenario. There are 18 correspondences between

concepts. Most of them (14, precisely) involve concepts that are semantically the same

(e.g., river, sea, lake, city, which occur in both input schemas). However the concept

country in one of the schemas can be combined with any subset of COUNTRY, ECON-

OMY, and POPULATION in the other schema. This is reflected in the respective similarity

numbers which are very close to 0.5. The reason for this “ambiguity” is that country in the

first schema is an unnormalized relation that includes attributes specific to economy and

population, which are stored separately, in different relations, in the second schema. The

schemas at the top of our ranking will enumerate all possible choices of combining these

concepts (from the most normalized to the most unnormalized), while making the obvious

choice for the rest of the concepts. In contrast, the schemas that are at the bottom of the

ranking will not combine some of the concepts that are obviously equivalent.

In the next subsection, we shall make a more precise qualitative argument, via a user

study.

Our top-k enumeration algorithm performed well as expected from its complexity anal-

ysis, taking ∼ 0.1 milliseconds on average to generate the next candidate assignment. The

initial steps and finding the first assignment are relatively more expensive, taking on aver-

age ∼ 0.2 milliseconds, since they involve sorting the whole set of distance edges. Find-

ing the immediate successive candidates is extremely fast (taking negligible time) since
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we only calculated the top-10 assignments. The previously discussed complexity analysis

confirms that our algorithm is practically efficient even if calculating a large number of k

candidates is required.

3.6.2 User Experiment

In general, the best assignments generated by the top-k algorithm may not always yield

the schema that is “best desired” by a particular expert, although they may yield a good

approximation. Thus, a human expert is still required for the schema integration process.

Our goal is to minimize the human effort rather than eliminate it. In this subsection, we

shall evaluate the effectiveness of our top-k algorithm as part of an interactive tool that

helps a human expert reach the “best desired” schema.

The tool works as follows. It first generates the (unconstrained) top-k schemas accord-

ing to the initial input (schemas and correspondences). The user then inspects a few of the

top schemas (the first, the second, etc.) and adds, if needed, one or more constraints in

the sense of [34]. These constraints are a mechanism through which a human expert can

“fix”, or override, the undesired choices made by the top schemas. Next, the system reacts

by generating the (new) top-k schemas that satisfy the constraints. The process continues,

with the user possibly adding more constraints, and so on, until the “best desired” schema

is obtained. There are two types of user constraints that we allow: “Always use correspon-

dence X”, and “Never use correspondence X”.13 The first constraint requires that the pair

of concepts connected by correspondence X must always be combined. It is equivalent to

fixing the bit for X (in the assignment vector) to be always 1. Conversely, the second con-

straint requires the correspondence X to be ignored. Thus, it is equivalent to fixing the bit

for X (in the assignment vector) to be always 0. Note that, with each such constraint, the

space of the candidate schemas is reduced by half. The regeneration of the top-k schemas

is done by re-invoking the top-k algorithm, after taking out the fixed variables from the

13These constraints are called, respectively, Apply(X) and ¬Apply(X), in [34].
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assignment vector. We note that, in the tool, we generate the top-k schemas only one at a

time, as demanded by the user. (Thus, the time per schema is more important than the time

to generate all top-k schemas.)

To evaluate the effectiveness of the resulting tool, we conducted a user study to evaluate

the number of user interaction steps needed to reach the “best desired” schema. We had

four users, which are researchers in our department and are database experts. Nevertheless,

they required a few hours to go through the three scenarios we selected for this experiment,

since they needed to understand the semantics of the schemas (and the domain). The results

of our user study are summarized in Figure 3.14.

Genex Mondial Dept-Proj-Emp

(constr.)(schemas)(constr.)(schemas)(constr.)(schemas)

User A 1 2 1 2 2 3

User B 1 2 1 2 1 2

User C 1 2 3 4 2 3

User D 0 3 3 4 0 5

Figure 3.14: User study in three of the scenarios.

We measure two types of interactive steps in the experiment. First, we count the total

number c of constraints that a user has to add, to instruct the tool. Second, we count

the total number s of different schemas that the user explores, before deciding the final

integrated schema. These numbers are not an exact measure of the human effort involved,

since they do not include the time to understand the source schemas, or the time to evaluate

the integrated schemas. Still, these parameters give an indication of the complexity of the

interactive process. As it can be seen, the number of interaction steps is consistently low in

all scenarios for all users.

For Genex, the users were consistent and picked the same “best desired” schema. A

total of 4 out the 6 correspondences connected semantically equivalent concepts (with many

common attributes). The top schemas generated by the tool chose, correctly, to merge

these concepts. The users were left to decide how to combine the concepts of array and
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measurement in one schema, with the concept of array measurement (which included

features of both array and measurement) from the other schema. All users decided that a

good design is to leave array as a separate concept, and to merge array measurement

with measurement. However, they accomplished this in different ways. User D let the

tool enumerate the first few schemas and stopped when she realized that the 3rd schema was

the desired one. Users A, B and C looked at the first schema, which merged the above three

concepts into one, and concluded right there that they did not want array to be merged

with array measurement. Hence, they added a constraint to prevent such merging. The

top schema (after regeneration) was then the desired schema.

The Mondial scenario had similar characteristics with Genex. In particular, the “hard”

choices involved the country concept (as discussed earlier). Here, the final schema was not

the same for all the users. Two of them (C and D) chose to merge all four concepts that had

country features (i.e., country, COUNTRY, ECONOMY, POPULATION), by explicitly

adding three constraints. The other two (A and B) achieved a more normalized schema, by

merging country with COUNTRY, but leaving ECONOMY and POPULATION as sepa-

rate concepts (with has edges to the integrated concept for country). Only one constraint

was needed for this.

Finally, the scenario with more “ambiguous” choices was Dept-Proj-Emp, where most

of the concepts in each schema could match several of the concepts in the other schema.

For example, employee in the first schema could match both manager and emp in the

second schema, while fund in the first schema could match both grant and project in the

second schema. Users A and D reached the same final schema, although in different ways.

Users B and C decided on different schemas. Thus, different users can often have different

integrated schemas (and different criteria of goodness) in mind. This confirms, one more

time, that an automatic system for schema integration is not realistic. Even so, the tool was

helpful in identifying the choices that all the users agreed with (e.g., merge employee with

emp, and merge fund with grant).
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Notably, the schema chosen by User C in this final scenario showed a case where the

unconstrained top-k algorithm could not have generated the “best desired” schema (even

for a large k). The reason for that is that User C decided that fund should be merged with

grant and, additionally, with project. The reasoning was that usually there is a one-to-one

relationship between a project and a grant; hence, the two concepts could be combined

into one. On the other hand, the unconstrained top-k algorithm gives little weight to the

choice of merging fund with project since they only have one attribute in common (project

name).

Overall, the user study validates the idea that the top-k algorithm identifies many of the

correct choices in practice. Thus, the user can focus her attention on the “difficult” cases.

This is reflected in the number of user constraints needed to guide the system. This number

is relatively small in our experiment.

3.6.3 Synthetic Scenarios for Analyzing Stability

We used a set of synthetic integration scenarios to study the frequency of used edges in the

top-k assignments, and specifically, to inspect how such frequency changes with varying

k. Intuitively, edges frequently used in the top-k assignments are more likely to be part of

the best assignment, while rarely used edges (or totally unused) are less likely to be part of

the best assignment. So, As previously outlined, we embraced the approach of generating

the top-k candidates and analyzing the frequency of used edges, and hence, automatically

calculating the best integrated schema.

If the frequency of used edges in the top-k assignments will be the main factor in

deciding the best assignment, then it is extremely important to study how such frequency

changes when we vary k. Typically, we need such frequency to quickly stabilize, in other

words, we seek a characteristic where the increase in k doesn’t significantly affect the

calculated frequencies. Such characteristic will provide a justification for the decision of
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relying just on a few number of top candidates to evaluate the frequencies. In the following,

we shall show that our cost formalization offers such appealing characteristic.

We generated 100 synthetic integration scenarios, for each, we randomly varied the

number of input schemas between 2 and 10, then, for each schema, we randomly generated

a number of concepts between 3 and 20. And, finally we randomly generated the distances

associated with all distance edges. We used a uniform probability distribution function in

all random number generations. For each scenario, we calculated the top-k assignments

for k = 1, 10, 20 ... 100. For each top-k, we calculated the frequency of each used dis-

tance edge and then calculated the absolute difference between such frequency and the

frequency of the same edge in the preceding top-k group, and then calculated the average

for all used distance edges.

Figure 3.15 depicts such analysis, the value corresponding to k = 10 is the average

difference in frequencies between the top-10 candidates and the top-1 candidate, while

the value corresponding to k = 20 is the average difference in frequencies between the

top-20 candidates and the top-10 candidates, and so on. It is clear from Figure 3.15 that

as k increases the differences in frequencies become less significant. This supports our

cost function formalization and the choice of relying on the enumeration of few top-k

candidates.

Figure 3.15: Average change in the frequency of the used edges in the top k schemas for

different k values
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3.7 Summary of Contributions

There are a number of features that distinguish our approach from existing work on schema

integration, model merging and ontology merging. In the context of ontology merging,

most literature has been primarily focused on the problem of ontology alignment, which is

deriving relationships across concepts in different ontologies (see ILIADS [140] as an ex-

ample). In contrast, the focus of our method is on the ranked exploration of the alternatives

for the structural, non-redundant unification of the concepts.

We briefly visited the method of Pottinger and Bernstein [111] in Section 1; this method

subsumes much of the earlier work on schema integration [22, 26, 128] and also includes

merging-specific features that are present in PROMPT [102] and other ontology merging

systems, such as FCA-Merge [131]. In the method described in [111], the user must provide

in advance a “template” of the integrated schema. In contrast, the input to our method is

just a set of atomic correspondences which can be discovered by an automatic schema

matching tool. From such input, our system is then able to generate the most “likely”

candidate integrated schemas. As in [111] and following [34], our method operates at a

logical level, where the schemas are described in terms of concepts and their relationships.

The work of [111] is extended in [112] by considering the schema integration problem

in the context of source schemas related by GLAV mappings, as opposed to just correspon-

dences between schema attributes. One possible direction is to investigate whether our

ranking and enumeration mechanism can extend to such context.

Our method builds upon the framework introduced in [34], which reduces the schema

integration problem to an enumeration of all possible ways of merging two graphs of con-

cepts. This enumeration defines in a very precise, mathematical sense, the space of can-

didate schemas. While the system in [34] relies exclusively on user interaction to navi-

gate and explore the space of candidate schemas, the method we propose in this thesis is

more automatic and relies on top-k enumeration to give higher priority to the more “likely”

schemas. In particular, we keep and exploit all the weights generated by the matching al-
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gorithms, which enables us to cost the integrated schemas. Furthermore, the use of weights

also enable us to define more refined relationships on the integrated schema (i.e., incorpo-

rate both merge and has decisions).

Our formalization of the schema integration problem as a top-k enumeration is different

from the general assignment problem [99], and existing techniques (see [99, 67, 101, 55])

do not immediately extend to our context. In particular, as discussed in Section 3.5.3, they

limit the ways in which concepts in one schema can be combined to concepts in another

schema.

Finally, we note that schema matching techniques have been extensively studied [118,

93, 25]. Our schema integration method is complementary to schema matching, since it

uses the outcome of schema matching. Furthermore, the emphasis here is on using directed

similarities rather than the more common undirected similarities.
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Bioinformatics Applications

In this section we focus on some important bioinformatics applications that required com-

bining data from multiple sources. We describe our experience in collecting, preparing and

integrating the required data. After going through the detailed schema integration steps,

we investigate how these combined data can be used in studying a number of useful bioin-

formatics applications. The problems involved accessing and utilizing data from various

data sources, for example, Genome DNA sequences from NCBI [21], Genes information

(location, density, etc.) and DNaseI hyper-sensitive sites from the UCSC genome browser

repository [79], micro-array and tissue specificity data from GNF SymAtlas [132], etc. We

start by giving a background about the addressed applications, then we discuss the details of

data collection, preparation and integration, followed by describing various methods used

in these applications, and we demonstrate and discuss the results. Various applications are

covered in this chapter, including a genome-wide nucleosome exclusion landscape, stud-

ies of gene density, tissue specificity, gene expression levels and DNaseI Hypersensitive

sites in the human genome. Additionally we validate the in silico computational results we

calculated with real laboratory results.

94
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4.1 Background

Nucleosomes are DNA-protein complexes that form the building blocks of eukaryotic chro-

matin. They are involved in genome condensation, and play a major role in the regulation

of gene expression [87]. Each nucleosome is made up of eight histone proteins that to-

gether form a structural unit able to accommodate 147 base pairs of DNA wound around it.

The DNA sequence has to have the flexibility and curvature that allows it to circle around a

nucleosome [145]. Empirical and theoretical studies have both shown that there are certain

DNA sequence patterns that are too rigid to form such loops [139]. These patterns include

GC-rich motifs as well as poly-A and poly-T tracts, these were compiled into NXSensor,

a web tool that predicts which DNA sequences would not be conducive to nucleosome

binding; these motifs are called nucleosome exclusion sequences [89].

Transcriptional regulation in eukaryotes is a complex process, as exemplified by recent

publications (for example, [30, 38]). The formation and positioning of nucleosomes are

crucial steps in gene regulation, in that they influence access to DNA by the transcriptional

machinery. Experimental work on nucleosome positioning in yeast [149, 121, 85, 15, 16]

and fly [113] has yielded significant results, and technological progress is such that we are

quickly learning more about nucleosome positioning in the human genome [104, 59].

Experimental work that verifies where a nucleosome is positioned is dependent upon

when the cells were sampled, and on which tissue or cell line the analysis was carried out.

In addition, it is known that nucleosomes slide to allow certain regulatory mechanisms to

take place [61], and it has been shown in yeast that nucleosomes are only occasionally

positioned by intrinsic sequence signals [108]. We therefore chose nucleosome exclusion

sequences as our predictive method, rather than nucleosome positioning sequences. We

can with a certain level of certainty predict where nucleosomes would not bind, and it is

therefore inferred that they can, and probably do, bind elsewhere.

Reported studies in [57, 89] observed certain trends in the nucleosome exclusion pat-

terns of promoter regions. Both studies showed that there is a peak of nucleosome exclusion
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sequences just upstream of the transcriptional start site of genes. This pattern has subse-

quently been found to be true also in yeast [85]. The studies in [57, 89] found that widely

expressed genes, sometimes referred to as housekeeping genes, had a higher nucleosome

exclusion potential than did tissue specific genes. This implies that the promoter regions

of widely expressed genes were less likely to have nucleosomes in them than were the pro-

moter regions of genes that had a narrow tissue distribution. This may allow easy access of

the transcriptional machinery to the DNA of ubiquitously expressed genes. However, these

studies had taken relatively small numbers of carefully selected human genes: 100 of each

category in the case of [89], and 500 each in [57], and they both relied on manual selection

and categorization of genes. The question remained whether there is a genome-wide trend

of a gradient of nucleosome positioning potentials, and what implications this may have

for the specificity of gene expression. These were the initial questions that we set out to

answer in this study.

One objective of the present study, therefore, was to carry out a whole genome an-

notation of nucleosome exclusion regions (NXRs) in the human genome, and to correlate

the results with tissue specificity, gene expression levels, and DNaseI hypersensitive sites.

We calculated nucleosome exclusion scores (NXScores) across the whole genome, and

observed NXScore trends in promoter regions. We classified tissue specific and widely

expressed genes according to a new method proposed here based on Grubbs’ outliers test,

and validated the results using a previously described method based on Shannon’s entropy

[120]. From a computational perspective, patterns such as NXRs and NXSs are fuzzy,

non-exact, and overlapping, which poses a challenge for the analysis of all 3.4 billion base

pairs of the whole human genome. We therefore developed a pilot grid architecture that

can carry out such computationally intensive tasks. In this study we report our results in

the context of the regulation of gene expression.
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4.2 Data Collection

The applications addressed in this section, not different from typical bioinformatics appli-

cations, required collecting, processing and combining data from various data sources. In

the following, we’ll describe these data sources in some detail and show how they were

processed and combined to offer a convenient and efficient way of conducting the study.

Schema integration offered a way of defining a unified representation for these data sources,

and hence facilitating data processing and manipulation tasks.

First, the study required processing the whole human genome DNA sequence. FASTA14

is a standard and popular format for representing and storing DNA sequences. The DNA

sequences in FASTA format for chromosomes 1 to 22, in addition to chromosomes X, Y

and M were downloaded from the NCBI data repository [21]. These sequences were pro-

cessed to locate nucleosome exclusion regions and to calculate the associated nucleosome

exclusion scores (the details for these processing steps is addressed in Section 4.4). The re-

sultant nucleosome exclusion regions were stored using the schema described in Table 4.1,

and the associated scores used the schema described in Table 4.2. Table 4.1 shows the at-

tributes of the Nucleosome Exclusion Regions schema, together with their SQL types and

descriptions for each. Each region has a unique id generated by the processing module to

uniquely identify such region, the chrom attribute shows which chromosome this region

belongs to. chromStart and chromEnd identify the start and end positions for the re-

gion. The location is zero based (i.e. the first base pair in each chromosome is numbered

0). Since there are a number of different nucleosome exclusion patterns, the type attribute

is typically an enumeration of possible pattern types, specifically, type − A identifies the

[(G/C)3N2]≥3 patterns, type − B identifies the poly-A patterns and type C identifies the

poly-T patterns (details on the choice and nature of these patterns are addressed later in

Section 4.4). Lastly, the sequence attribute carries the actual sequence localized. Table 4.2

shows the schema for Nucleosome Exclusion Scores, where the chrom attribute identifies

14http://www.ncbi.nlm.nih.gov/blast/fasta.shtml
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Table 4.1: Nucleosome exclusion regions
Attribute SQL Type Description

id varchar(20) nucleosome exclusion region id

chrom varchar(255) chromosome

chromStart int(10) unsigned Start position in chromosome

chromEnd int(10) unsigned End position in chromosome

type varchar(255) pattern type (e.g. poly-A)

sequence longblob dna sequence for this region

Table 4.2: Nucleosome exclusion scores
Attribute SQL Type Description

chrom varchar(255) chromosome

chromStart int(10) unsigned start position in chromosome

chromEnd int(10) unsigned end position in chromosome

score double exclusion score

the chromosome, chromStart and chromEnd identifies a constant-score region within

this chromosome (can be of variable length), and the score shows the exclusion scores. For

data size considerations, this table only contains records for regions having score > 0, a

score of 0 is assumed for missing regions.

Calculating the nucleosome exclusion regions and the associated scores were two of the

initial steps in this study. Next, it was required to combine these data with data from various

other sources. The correlation with gene density required information about genes, their

location and transcription information, etc. Table 4.3 shows the schema for the table having

these information, the name attribute carries the gene id, the chrom attribute identifies the

chromosome where this gene is located, the strand identifies if the gene is located on the

+ve or -ve strand of the chromosome, txStart and txEnd specifies the transcription start and

end positions, cdsStart and cdsEnd are the translation start and end positions, translation is

the process of synthesizing the gene product (i.e. the protein). A description of the rest of

the attributes in included in Table 4.3. The source for these data was the UCSC Genome

Browser [79].

The correlations with tissue specificity and genes expression levels required incorpo-

rating micro-array and gene expression information and additionally to study how such

expression levels vary from one tissue to the other. This required incorporating the GNF-

SymAtlas datasets, which contains 44,775 expression profiles across 79 human tissues and
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Table 4.3: Genes based on RefSeq, GenBank, and UniProt
Attribute SQL Type Description

name varchar(255) name of gene

chrom varchar(255) reference sequence chromosome or scaffold

strand char(1) + or - for strand

txStart int(10) unsigned transcription start position

txEnd int(10) unsigned transcription end position

cdsStart int(10) unsigned coding region start

cdsEnd int(10) unsigned coding region end

exonCount int(10) unsigned number of exons

exonStarts longblob exon start positions

exonEnds longblob exon end positions

proteinID varchar(40) UniProt display ID for Known Genes, UniProt accession or RefSeq protein ID for UCSC Genes

alignID varchar(255) unique identifier for each (known gene, alignment position) pair

Table 4.4: Known to GNF Atlas2 (Genes’ ids and the corresponding micro-array probe id
Attribute SQL Type Description

name varchar(255) primary id (Gene id)

value varchar(255) associated id (Probe id)

cell types and is itemized by oligonucleotide probes [133]. Table 4.4 shows the schema

for the data source relating the genes and the corresponding micro-array probes. First, all

non-specific and partially-specific micro-array probe sets were removed from our datasets,

leaving only the specific target data, with each probe corresponding typically to only one

gene. This probe set was then joined with the Known Gene database of the UCSC Genome

Browser [79] (discussed above), from which information on the chromosomal location of

the gene, and its transcriptional start and end positions was extracted. Any further redun-

dancies were filtered out at this step, resulting in 19055 genes.

Table 4.5 shows the schema for the table having the information about expression scores

(across tissues) corresponding to each micro-array probe. It shows the probe name, and

the number of scores reported and a comma delimited sequence of scores. To link each

indexed score in this sequence to the corresponding tissue name, the tissue indexes table is

used (the schema is shown in Table 4.6). The correlation with the DNase1 hyper sensitive

sites required incorporating an additional data source from the UCSC Genome browser

repository. The schema is depicted in Table 4.7, this data source gives the values for the

predicted hydroxyl radical cleavage intensity on naked DNA for each nucleotide. The

promoter region sequence (-1500 to +500) for each of the genes involved in the study

were downloaded and fed for analysis through processing and pattern matching modules.
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Table 4.5: Tissues’ expression scores per probe
Attribute SQL Type Description

name varchar(255) probe name

expCount int(10) unsigned scores count

expScores longblob reported scores (comma separated)

Table 4.6: Tissues’ indexes and names
Attribute SQL Type Description

id int(10) unsigned tissue id (index)

name varchar(255) tissue name

description longblob

url longblob

ref longblob

credit longblob

numExtras int(10) unsigned

extras longblob

Table 4.7: Predicted hydroxyl radical cleavage intensity on naked DNA for each nucleotide

in the ENCODE regions
Attribute SQL Type Description

bin smallint(5) unsigned indexing field to speed chromosome range queries

chrom varchar(255) reference sequence chromosome or scaffold

chromStart int(10) unsigned Start position in chromosome

chromEnd int(10) unsigned End position in chromosome

name varchar(255) name of item

span int(10) unsigned each value spans this many bases

count int(10) unsigned number of values in this block

offset int(10) unsigned offset in File to fetch data

file varchar(255) path name to data file, one byte per value

lowerLimit double lowest data value in this block

dataRange double lowerLimit + dataRange = upperLimit

validCount int(10) unsigned number of valid data values in this block

sumData double sum of the data points, for average and stddev calc

sumSquares double sum of data points squared, for stddev calc

Different data processing modules were wrapped as web services. The development was

done using Java, and some modules utilized BioJava APIs [2].

4.3 Schema Integration

As discussed earlier in Chapter 3, the integration process starts by matching individual

schema components, followed by integration decisions on how to structurally compose

the integrated schema. Figure 4.1 shows the input (source) schemas (detailed descrip-

tion of these schemas can be found in Section 4.2). The source schema S1 represents

the calculated data for nucleosome exclusion regions and scores, it shows three tables,

the Chromosome, the NXRegins and the NXScores tables. The source schema S2
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Figure 4.1: Input (source) schemas for the prepared data (S1), UCSC Genome Browser

(S2) and GNF Atlas (S3).

represents the Genes and DNase1 tables from UCSC Genome Browser, in addition to

an alternative representation for chromosomes data (table Chrom). The GNF-SymAtlas

data represented in source schema S3 shows data of tissues, genes and their expression

scores (the Microarray Probe, Probe T issues and T issues tables), in addition to a

source-specific alternative representatives for the genes and chromosomes information (ta-

bles Chromosomes and Gene). The dotted directed lines represent foreign key/primary

key relations, while the solid lines connect matching attributes across schemas (according

to the schema matching process). The matching process relies on both the metadata (col-

umn names and types), in addition to similarities between actual data instances that these

columns contain.
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Having this representation for the input source schemas, the next step is to construct

their corresponding concept graphs. Figure 4.2 shows the concepts graphs corresponding

to the input schemas shown in Figure 4.1. The concept graphs corresponding to S1 and

S2 has three concepts each, while the concept graph for S3 has six concepts. Refer to

Section 3.2 for the details on how these concepts graph are constructed from their corre-

sponding schemas. Concept graphs are used as an abstract model for representing different

types of schemas and they serve as an intermediate representation that facilitate the schema

integration process. Using our proposed schema integration approach, the integration pro-

cess is a matter of evaluating possible combination decisions, and ranking these alterna-

tives. So to qualify these decisions, the next step is to calculate the distances/similarities

between the concepts across the input schemas. The procedure described in Section 3.3 is

used to calculate the directed similarities shown in Figure 4.3. As previously mentioned,

we only include similarities between concepts that has one or more matching attributes.

The figure uses the graph and concept labels from Figure 4.2 as identifiers, for example,

S1.C1 represents the concept labeled C1 in the S1 concept graph. In Figure 4.3, the tables

(a), (b) and (c) show the edges connecting concepts across the S1 ←→ S2, S1 ←→ S3

and S2 ←→ S3 schemas, respectively. Note that, for S3 only C1 and C2 are included,

since the rest of the concepts have no matching attributes to any other concepts in S1 and

S2. For each edge the table shows the two directed similarities (shown as an ordered pair

between brackets), in addition to the undirected similarity (the min of both as described in

Section 3.3). Here we have 21 distance edges, labeled X0 to X20 and numbered based on

descending order of their undirected similarities.

Having the edges and their corresponding directed and undirected similarities, we can

use our Top-K algorithm (described in Section 3.5) to find the top combination candidates.

The steps are depicted in Figure 4.4. The process starts with an initial step of calculating

the first assignment A1, which is the minimum cost assignment, by using the edges where

Ŝi ≥ D̂i (to minimize the overall cost of the assignment). The next step is to calculate
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Figure 4.2: Input concepts corresponding to the source schemas shown in fig. 4.1.

Figure 4.3: Distances between the input concepts.
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Figure 4.4: Enumeration algorithm to find the top-k schemas.

a vector ∆f = [∆fn−1...∆f0], where ∆fi = |Ŝi − D̂i|. For each i, ∆fi represents the

increase in cost - w.r.t. cost(A1) - if the bit i (i.e., variable Xi) in A1 were to be flipped

(from the current value to its complement). We sort the ∆f vector in increasing order, and

denote the new sorted vector as ∆fs. At the same time, we keep track in a Map vector of

the new positions of the variables Xi after sorting. We next proceed to explore incremental

modifications of the original assignment A1 in order to explore the next best assignments

(the 2nd best, the 3rd best, and so on). The incremental modifications are based on the

sorted vector ∆fs of cost increases. Specifically, if we look at Figure 4.4, it can be seen

that the 2nd best assignment can be obtained by just flipping the bit X3, since this will give

the least cost increase (according to ∆fs). Next, to compute the 3rd best assignment, we

need to change the variable with the next cost increase (i.e., X4) and leave X3 unflipped

(relative to A1). The proposed algorithm is Section 3.5 presents a systematic approach for

enumerating the top k assignments which is polynomial in k. The algorithm iteratively

outputs the top-k assignments in increasing cost in the form of bit vectors F = [fn−1...f0].

Recall that, ∆fsi
is the increase in cost associated with setting bit fi to 1. Also, recall that

these F bits are all 0 for the first assignment A1.

Figure 4.5 shows the resulting top 5 assignments. These assignments can be used to

generate the corresponding combined concept graphs and hence the corresponding inte-
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Figure 4.5: Top-5 assignments (integrated schemas).

grated schemas. We ran the top-k algorithm to generate the top 64 and 128 schemas and

calculated the time taken, the table in Figure 4.6 shows the results.

Attribute Source Concept Time (ms) Time (ms)

Corresp. Concepts Corresp. Top-64 Top-128

36 12 21 1.47 1.73

Figure 4.6: Results for generating the top-64 and the top-128 schemas.

After evaluating the top 10 integrated schemas, we have decided to use the The first

(top) integrated schema. The top assignment in Figure 4.5 was used to generate the com-

bined concept graph shown in Figure 4.7(a). The graph has nine concepts, we can see that

the algorithm correctly merged the three different alternatives for the Chromosme con-

cept, in addition to merging the Gene concept in two of the input graphs (S2 and S3) into

a single concept in the combined graph. The integrated schema corresponding to the con-

cepts graph is also shown in Figure 4.7(b). This integrated schema was used to facilitate

the data manipulation capabilities required in this study.

4.4 Methods

4.4.1 Locating Nucleosome Exclusion Regions

We used a slightly modified version of nucleosome exclusion patterns identified in [89],

which in turn were based on experimental data from a variety of sources [119, 143, 135].

These sequences were used to locate nucleosome exclusion regions (NXRs) throughout the

human genome:
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Figure 4.7: (a) Integrated concepts graph corresponding to the best (first) assignment, and

(b) Equivalent integrated schema.
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[(G/C)3N2]≥3; e.g.: GGCAACGCTTGGGTA

A≥10(= T≥10); e.g.: AAAAAAAAAA, TTTTTTTTTT

It should be noted that our algorithm did not include sequences that had a weaker ten-

dency to exclude nucleosomes, or that were rare on a genome-wide level, such as TGGA

repeats [29]. This is because nucleosomes are known to slide [61] and we did not want to

annotate a weak signal in case nucleosomes could slide into that particular region. Having

said that, we do intend to update the annotations on the supporting online website when

other strong exclusion sequences are reported and verified.

The hg18 (March 2006) human genome build was downloaded from the UCSC Genome

Browser, and scanned base by base for NXRs. NXRs were annotated, and overlapping

patterns were merged into one contiguous region in the final annotation. The annotations

were compiled into a well supported exchange format for Feature description, GFF.

Nucleosome Exclusion Score Calculation

The nucleosome exclusion score (NXScore) measures the tendency of a specific DNA re-

gion to exclude nucleosomes. In order to have a continuous score across query sequences

of variable length, the NXScore for each single base pair was calculated relative to a 147

base pair window, defined as the neighborhood of a particular nucleotide, centered at that

nucleotide. The results per nucleotide are used to calculate the NXScore for any given

region, as shown below:

• NXScore calculation for a single base pair: Calculating the NXScore per nu-

cleotide depends on the density of NXRs in the 147 bps neighborhood of that nu-

cleotide, however to fine tune our score calculation we specifically evaluated the

weighted density of NXRs in the neighborhood. The idea behind the weighted den-

sity is to assign higher weights to NXRs close to the base pair under calculation than
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Figure 4.8: The NXScore at a nucleotide position depends on the weighted density of

Nucleosome Exclusion Regions in the neighborhood surrounding the position.

distant NXRs. Figure 4.8 illustrates how this calculation is performed, the calcula-

tion is performed for the nucleotide at position x = 0 and NXR1,2,3 are example

exclusion regions, while fi(x) is the weighting function. We used a simple linearly

decreasing weighting function, after finding that other functions yielded similar re-

sults, and maintaining that our main concern was identifying the peaks rather than the

rate of change of the scores. For example, the score for a nucleotide whose 147 bp

neighborhood contains one NXR of length x and located at either end of the neigh-

borhood should be less than the score for a nucleotide whose 147 bp window contains

one NXR of the same length x but at the center of the window (i.e., surrounding the

nucleotide in question).

NXScores can take the values 0 to 1 inclusive, such that if a nucleotide is centered

in a neighborhood that is full of NXRs, then its NXScore will be equal to one. On

the other hand, if the neighborhood is free from NXRs then the NXScore for that

nucleotide will be zero. Figure 4.17 illustrates an example of NXRs and NXScores of

a particular gene, chosen from chromosome 21. For display purposes, the NXScores

in this figure and the rest of the figures in the study were scaled up to span the range

from 0 to 1000 inclusive.

• NXScore calculation for a sequence: Having defined the NXScores for single nu-
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cleotides, and given a DNA sequence of length n bp, its NXScore Sn is defined as

the average NXScores for the n bp that make up that sequence. This can be repre-

sented by the formula: Sn = 1
n

∑n

i=1 si, where si is the NXScore for bp i, and the

summation is over the n bp.

NXScores annotations for the whole human genome are available in wiggle format [5]

from the additional files.

4.4.2 Tissue Specificity Measures

A number of methods, based on microarray gene expression datasets, have been proposed

for measuring the tissue specificity of gene use. Despite the inherent limitations of com-

paring microarray datasets, some methods have been able to describe trends in tissue speci-

ficity. In [120], the effectiveness of using Shannon entropy was demonstrated for ranking

genes according to their tissue specificity, from narrow or tissue-specific expression, to

wide or ubiquitous expression. Shannon entropy was used and updated in [77]. Earlier,

a method derived from Akaike’s information criterion, which was originally developed to

detect outliers in a data set, was applied in [76], and was used to rank genes according to

their tissue specificity.

Using the GNF-SymAtlas [3] gene expression dataset [133], we categorized known

genes according to their tissue specificity levels, and investigated their possible correlation

to NXScores.

Algorithms Used: We propose a new and efficient technique for ranking genes accord-

ing to their tissue specificity, based on Grubbs’ outliers test [60]. To validate our results we

also used the previously published ranking mechanism utilizing Shannon’s entropy. Both

techniques gave almost the same results, verifying that this use of Grubbs’ test is valid. It

should be noted that the proposed technique in this study has the advantage of being able

to detect both up-regulated and down-regulated genes in a microarray data set. We defined

up-regulated genes as those that are expressed at a significantly high level in a limited group
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Figure 4.9: Tissue-specific and wide-use genes. Examples of the expression profile for a)

a tissue-specific gene, NM 004320, and b) a wide-use gene, NM 152422.

of tissues compared to their expression in other tissues, and down-regulated genes as those

that are expressed at significantly lower levels in a limited group of tissues compared to

mid- to high- expression in other tissues. Even though for this particular study we only

used up-regulated genes, the applicability of this method is valid for other data sets.

Figure 4.9 shows examples of the expression profiles of a tissue-specific gene (NM 004320,

ATP2A1) and a gene that has a wide tissue distribution (NM 006908, RAC1). The x−axis

represents the tissues index, while the y − axis depicts the expression scores. Strictly

speaking, microarray data are not quantitative measures of expression levels, but they do

give some indication of the trends. These values were used in the tissue specificity ranking

calculations, detailed as follows:

• Grubbs’ outliers test: The Grubbs’ test [60], also known as the maximum normal-

ized residual test, can be used to test for outliers in a univariate data set. Given the

expression profile of a gene, the Grubbs’ test G can be calculated as G = max(wt−w̄)
std

,

where, std =
√

1
n−1

∑n

t=1 (wt − w̄)2
, w̄ =

∑

n

t=1
wt

n
, wt is the expression score for

tissue t, std is the standard deviation for the expression profile, and w̄ is the mean
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expression score. The more specific the gene, the higher the G value, and vice versa.

While this formula for G identifies up-regulated genes, replacing max with min can

identify down-regulated genes.

• Shannon’s entropy: The concept of Shannon’s entropy [123] has a central role in

information theory, and is sometimes referred to as the measure of uncertainty. The

entropy of a random variable is defined in terms of its probability distribution, and

has been shown to be a good measure of randomness or uncertainty. The entropy is

maximum when the variable is uniformly distributed, i.e., it exhibits the highest un-

certainty. Given a gene expression profile similar to those in Figure 4.17, the Shannon

entropy (H) can be calculated as H =
∑n

t=1 pt.log2(pt), and, pt = wt
∑

n

t=1
wt

, where wt

represents the expression score for tissue t, and pt is calculated by normalizing this

value relative to the sum of expression scores for all tissues. The more specific the

gene, the less its entropy, and vice versa.

4.5 Applications

4.5.1 Nucleosome Exclusion Landscape

First we constructed a whole genome landscape of nucleosome exclusion regions and cal-

culated their exclusion scores. The results were compiled as GFF [1] and Wiggle [5] files

for each of the human chromosomes, and are made available through the links provided

in Additional Materials. This data is being made publicly available by the UCSC Genome

Browser under their Custom Tracks Page [4].

Immediately obvious from the data is the fact that NXScores increase significantly at

and around the transcriptional start sites (TSSs) of genes (Figure 4.10). This confirms

previous observations that, regardless of how many nucleosomes there may be in a given

promoter region, nucleosomes are preferentially excluded from the immediate area where
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Figure 4.10: NXScore peaks around TSSs. An example of NXScore peaks around the

transcriptional start site of genes. Shown above are the NXScores for two neighboring

genes on chromosome 21. The figure was prepared by uploading NXScore results as a

Custom Track on the UCSC Genome Browser, and taking a snapshot with the Known

Genes track.

the transcriptional machinery needs easy access to the DNA [89]. The sections below

highlight other observations and correlations we found.

4.5.2 Correlation with Gene Density

We observed a genome-wide correlation between NXScores and gene density, such that

gene-rich areas have high NXScores (Figure 4.11). To validate this observation, we cal-

culated the mean NXScore for each of the ENCODE regions [7] (Human Genome, UCSC

Release hg18). We then counted the number of RefSeq genes in each region, and normal-

ized that number by the size of the corresponding ENCODE region. Figure 4.11b shows

the mean NXScore and the density of gene number for each ENCODE region. The data

sets exhibit a strong positive correlation (r = +0.71) based on a Pearson product-moment

correlation coefficient. This confirms the observation that gene-rich areas have high NXS-

cores. Figure 4.11a illustrates this trend using chromosome 20, similar figures for all the

human chromosomes are available in the supplementary data files.
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Figure 4.11: Correlation between NXScores and gene density. (a) Chromosome 20 is

shown as an example, where the empty area in the middle is the centromere, and the boxes

highlight two examples of gene-rich areas with high NXScores. The figure was prepared by

uploading NXScore results as a Custom Track on the UCSC Genome Browser, and taking

a snapshot with the Known Genes track. (b) The calculated correlation between NXScores

and the density of gene number for the ENCODE regions of hg18.
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4.5.3 Correlation with Tissue Specificity

We obtained the gene expression profiles of 19055 genes and developed a new method for

ranking the tissue specificity of those genes. The available SymAtlas “tissue list” includes

79 cell types, tissues and organs, which makes it difficult to classify genes categorically

into tissue specific groups. Furthermore, genes that have been classified as tissue specific

by other researchers were often expressed equally in three or four different tissues. In

order to overcome this problem, we refer to genes as having a wide tissue distribution if

they are expressed at relatively equal levels in five tissues or more, and as having a narrow

distribution if they are expressed at relatively equal levels in only one or two tissues. To

follow this idea through, we needed a method of ranking genes according to their tissue

distribution, so that we could correlate this with NXScores.

The RefSeq-annotated transcriptional start site (TSS) was used to identify the promoter

region of each gene, and NXScores were calculated for the region TSS−1500 to TSS+500.

The resulting values were used to sort the 19055 genes in ascending order (i.e., from no

nucleosome exclusion to complete nucleosome exclusion). The sorted list was then divided

into n groups. The mean tissue specificity for each of these groups was calculated using a

method we developed based on Grubbs’ test [60], and we validated this method using an

already established method for ranking tissue specificity based on Shannon entropy [123].

Grouping genes facilitated the inspection of the general trends among gene groups

while filtering noise and extraneous behavior that maybe associated with specific limited

number of genes (within the group). Hence, the number of groups n served as a zooming

parameter for inspecting and visualizing such trends. Figure 4.12 shows the results for

n = 10, illustrating the correlation between the tissue specificity of gene expression and

NXScores. To provide a closer inspection of these trends, figures are made available in

Additional Materials for the results of groups of n = 5 (zoom out), n = 20 (zoom in), and

n = 40 (higher zoom in). The results show that previous localized findings [57, 89] are

valid on a whole genome level. There is a direct correlation between the NXScores in the
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Figure 4.12: Correlation between NXScores and tissue specificity. The 19055 genes were

arranged into 10 groups (0-9) of increasing NXScores for the -1500 to +500 promoter

regions, and the mean tissue specificity level for each band was calculated using a new

method based on Grubbs’ test (a) and validated using a previously known method based on

Shannon’s entropy (b).

promoter region and tissue specificity. The higher the NXScore of a promoter sequence,

the less likely it is to include a nucleosome, and the less tissue specific the associated gene

is. Given the complexity of transcriptional regulation in the eukaryotic system, there may

be a few exceptions to this, but the genome-wide trend is clearly observed from our results.

One could deduce from this that the transcriptional machinery has relatively unimpeded

access to the TSSs of widely expressed genes. It is expected that the types of transcription

factors that switch on widely expressed genes are generally not those that can tolerate the

DNA being wound around a nucleosome.

To take a closer look at the promoter region, the genes were sorted according to their

measure of tissue specificity, then grouped into three groups; group 1 constitutes the top

10% tissue specific genes, group 2 constitutes the top 20% tissue specific genes, while

group 3 constitutes the whole collection of 19055 genes under inspection. For every gene,
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the NXScore for each base pair in the promoter region was calculated and then averaged

separately for genes of each group. The objective was to inspect promoter NXScores pro-

files among genes with varying tissue specificity levels. Again, note that groups and av-

eraging were used to inspect general trends while filtering noise and extraneous behavior

that may be associated with a limited number of genes within each group. The results (Fig-

ure 4.13) show that the NXScore peak is approximately 30 bases upstream of the TSS, and

that there is a shoulder immediately downstream from the TSS, extending approximately

250 bases into the gene. There is thus a tendency for the region surrounding the TSS to

be nucleosome-free, regardless of whether the gene is widely or narrowly expressed. This

presumably helps maintain the momentum of the transcriptional machinery as it moves

from the TSS through the first part of the gene. After that point, there is a significant de-

crease in mean NXScore before it levels out, implying that the remainder of the gene is

more likely occupied by nucleosomes. This is in agreement with ENCODE findings that

regulatory sequences that surround transcription start sites are symmetrically distributed

[8]. Our results indicate that there is a gradually increasing tendency for the promoter to be

nucleosome-free the closer one gets to the TSS (Figures 4.10 and 4.13). We used the Ref-

Seq gene-annotations of transcriptional start sites (RefSeq-TSSs), and found the average

NXScore to peak about 30bp upstream from the RefSeq-TSS. However, we also found that

the RefSeq-TSSs themselves are often 20-40 bp downstream from the TSSs determined

by experimental methods [136, 30]. Therefore the peak of nucleosome exclusion seen in

our results appears, on average, to be centered on the transcriptional start site. This is in

agreement with the findings of [104], who provided experimental evidence that the region

around the TSS in humans was relatively nucleosome-free.

Figure 4.13 highlights that all 19055 genes follow the trend explained above, and that

the more tissue specific groupings follow that trend but with lower NXScore peaks. The

top 10% most tissue specific genes have the lowest NXScore peak, meaning that even

though their TSS region is depleted of nucleosomes, there are more exceptions to that trend
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Figure 4.13: Mean NXScores for promoter base pair positions -1500 to +1500. The red line

represents the mean NXScore across the top 10% most tissue specific genes, i.e. those with

the narrowest tissue distribution, the green line represents the mean across the top 20%, i.e.

a grouping of slightly wider distribution genes, and the blue line represents the mean across

all the 19055 genes sampled.

in this group than there are across all the genes. This is in agreement with the previous

conclusion that the more tissue-specific a gene is, the more likely it is to have nucleosomes

on its promoter. The differences in NXScore peak value observed here suggest that with

gradually increasing tissue specificity, nucleosome binding to promoter regions plays an

increasingly important role in gene regulation.

4.5.4 Correlation with Gene Expression Level

NXScores for each gene were calculated from the RefSeq-annotated TSS to the RefSeq-

annotated 3’UTR end of the gene, including all exons and introns. Then the median ex-

pression level was calculated for each gene using the SymAtlas gene expression profiles

[133]. We calculated the median in order to filter very high or very low expression lev-

els that may be associated with specific tissues, since our objective for this analysis was

to capture expression levels across each gene irrespective of tissue specificity. The genes

were then sorted according to increasing NXScore, the sorted list was equally divided into

5 groups, and the mean expression level was calculated for each group. This grouping and



www.manaraa.com

118

the calculations undertaken were used to inspect general trends while filtering noise that

may be associated with a limited number of genes within each group.

The data show that gene expression level is positively correlated with high NXScore

(Figure 4.14a), and that expression level drops with very high NXScores. This can be

clearly seen if we zoom in slightly and divide the data set into 10 groups, as illustrated in

Figure 4.14b. In other words, the peak in expression level is around moderate NXScores:

expression is lower when there are a lot of nucleosomes present (lower NXScore), and it is

also lower when there are hardly any nucleosomes present (high NXScore). NXScores are

calculated using G/C-rich sequence patterns [89], and G-C pairing involves three hydrogen

bonds, whereas A-T pairing involves only two, which allows us to speculate that the lower

expression levels of genes with the very high NXScores may reflect slower movement of

the transcription machinery through regions of very high G-C content.

4.5.5 Experimental Validation

Thus far all our observations have been in silico. To validate our annotations, we compared

our scores to conserved nucleosome locations that have been reported in recent studies

[104, 85]. The study in [104] reported nucleosome occupancy on the promoter regions of

several human genes, and we looked at the NXScores of those exact sequences. For further

validation, we ran the NXScores algorithm on selected regions of the Saccharomyces cere-

viciae genome, namely those used in [85], to report experimentally verified nucleosome

positions.

It is evident from Figure 4.15 (more graphs are available in Additional Materials) that

although our nucleosome exclusion predictions and the experimentally verified nucleosome

positions correlate well, they do not correlate exactly. In some cases, NXScores did not

predict nucleosome depletion in a region where no nucleosomes were found. The results

constitute a 7% false negative error margin, and for this we have two possible explana-

tions. Firstly, we suggest that the sequences not picked up by NXScores may be regions to
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Figure 4.14: Correlation between NXScores and gene expression levels. The 19055 genes

were first ranked according to increasing NXScore for the whole gene (TSS to end of

3’UTR), and the sorted list was divided into (a) 5 and (b) 10 groups. The mean value of

the median expression level for the genes in each group was plotted. The graph shows

that NXScores are positively correlated with gene expression level except at the very high

NXScores, where expression levels decrease.
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which nucleosomes slide according to the transcriptional activity state of the promoter at

any given time. More importantly, however, these discrepancies highlight the fact that we

were stringent in our choice of nucleosome exclusion sequences for our algorithm. We did

not use weaker nucleosome exclusion sequences that have been reported in the literature

because we wanted to have a certain level of confidence in predicting where nucleosomes

will not bind, and assume that they may, at some developmental or physiological state, bind

on the weaker exclusion signals [51, 113].

The study in [104] calculated the average log2(Cy5/Cy3) data of 57 MITF-bound pro-

moters in the human genome. We compared these results with our calculated average NXS-

cores promoter profile for the 19055 genes under inspection (Figure 4.15c), and obtained

a medium-to-strong negative correlation (r = −0.47 based on Pearson product-moment

correlation coefficient). This correlation is satisfactory keeping in mind that nucleosomes

can slide according to the transcriptional activity of the promoter, and that our profile was

calculated as a consensus promoter profile representing the 19055 genes, while the nucle-

osome positioning results were obtained using 57 MITF-bound promoters. In fact, overall,

there were almost no examples where NXScores were high on areas that were experimen-

tally shown to be occupied by nucleosomes.

4.5.6 Correlation with DNaseI Hypersensitive sites

As a final comparison, we looked at whether nucleosome exclusion scores would correlate

with DNaseI hypersensitive sites (DHSs). It is known that nucleosome-free areas are more

prone to digestion by DNaseI, and it was reported in [146] that ubiquitous DHSs, shared by

6 cell lines, were found near the transcriptional start sites of some genes, implying a wide

usage of that gene, or at least of that promoter.

The study in [59] predicted the hydroxyl radical cleavage intensity on naked DNA for

each nucleotide in the ENCODE regions. We downloaded this data for the whole set of

hg18 ENCODE regions from the UCSC Genome Browser, and calculated the mean value
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Figure 4.15: Correlation between NXScores and experimentally verified nucleosome ex-

clusion regions. (a) The -1500 to +500 promoter region of the human genes FOS and

CBLL1 are shown with the nucleosome positions from Ozsolak et al. (2007) denoted by

black bars superimposed on the NXSensor graphics. The results and correlations of sev-

eral other genes can be found in Additional Materials. (b) The promoter regions of the

yeast benchmark genes CHA1 and HIS3 are shown with the nucleosome positions from

Lee et al. (2007) denoted by black bars as above. The NXScore results were uploaded as

a Custom Track on the UCSC Genome Browser, and a snapshot was taken with the human

RefSeq genes track (a), or the protein coding genes track from yeast (b). (c) The correla-

tion between the mean NXScores for the TSS−200 to TSS+200 promoter region of 19055

genes, and the calculated average log2(Cy5/Cy3) data of 57 MITF-bound promoters in the

human genome.
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of the predicted cleavage intensity for each region. The objective of this analysis was to

investigate whether regions with high NXScores would have a high predicted cleavage

intensity.

First, we calculate the NXScores for each region, and took the locations for NXScore

peaks that had NXScores higher than p, where p = µ + (τ × s). µ and s are the mean and

standard deviation of the NXScores across the region, respectively. τ is a parameter for

determining the height of the calculated peaks, such that the higher the τ value, the higher

the peak value and fewer the number of the peaks across the regions, and vice versa. Next,

for each peak location, we calculated the mean predicted cleavage intensity of a 147 bps

neighborhood centered at the peak, and we averaged these values for all peak locations in

a specific region for a specific τ .

In this way we were able to show that the mean predicted cleavage intensity around the

peaks is higher than the mean intensity across the whole region, thus proving that regions

with a high NXScore also have a high cleavage intensity.

To further investigate this, we varied τ from 3 to 9 and reported the results for each τ . As

expected, the higher the τ , the higher the mean predicted cleavage intensity. Figure 4.16a

shows the ratio between the average calculated cleavage intensity around the peaks and the

average cleavage intensity for that whole region, for all ENCODE regions at different τ

values. When τ = 3, the mean intensity increased by approximately 26%, and the intensity

increased with increasing τ , reaching a 61% increase when τ = 9. Figure 4.16b illustrates

this correlation for ENCODE region ENr231. The table in Figure 4.17 shows a detailed

account of these calculations for each ENCODE region.



www.manaraa.com

123

Figure 4.16: Correlation between NXScores and DNaseI hypersensitive sites. (a) This

graph shows the ratio between the average calculated cleavage intensity around the peaks

and the average cleavage intensity for that whole region, for all ENCODE regions at differ-

ent τ values. (b) The tracks for NXScores and DNaseI hypersensitive sites are shown for

ENCODE region ENr231 in a snapshot of a UCSC Genome Browser screen.
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Figure 4.17: Correlation between NXScores and DNaseI hypersensitive sites (calcula-

tions). This table shows the results and all intermediate calculations for the correlations

between NXScores and DNaseI hypersensitive sites for all ENCODE regions of hg18.
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Chapter 5

A Cloud Data Processing Abstraction

Layer

Using the low-level MapReduce for general data processing tasks poses the problem

of developing, maintaining and reusing custom low-level user code. In this chapter, we

propose and describe a novel refined MapReduce model, MR-LEGOS, an explicit model

for composing MapReduce constructs from simpler components, namely, “Maplets”, “Re-

ducelets” and optionally “Combinelets”. Maplets and Reducelets are standard MapReduce

constructs that can be composed to define aggregated constructs describing the problem

semantics. We’ll show that by using the proposed model, complex problem semantics can

be defined in an easier and more efficient way. The model is analogous to LEGO bricks

that can be connected in various configurations to construct different shapes. Having a col-

lection of these standard and reusable predefined bricks, helps define complex processing

tasks in an efficient, scalable and easily maintainable way. We present the design details,

usage scenarios, performance analysis and highlight the main features of MR-LEGOS.

5.1 MapReduce LEGOS Job Model

As previously discussed, in a conventional MapReduce job, the programmer basically pro-

vides two functions/classes; a Mapper and a Reducer. The Mapper and Reducer are used

to describe the MapReduce job semantics. MR-LEGOS refines such composition where a

set of Mappers (Maplets) and Reducers (Reducelets) can be used to compose the MapRe-

125
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Figure 5.1: Internal design of the refined MR-LEGOS job definition. The Map is composed

of a collection of Maplets, while the Reduce is composed of a parallel array of Reduclets

followed by a collection of Maplets. The MR-LEGOS job definition describes how these

Maplets/Reducelets are connected within the job.

duce job. MR-LEGOS also provides the capability of grouping input and outputs into

logical units. Accordingly, using MR-LEGOS, the programmer provides a list of logically

grouped inputs and outputs and a set of Maplets and Reducelets that are used in the job

composition. Additionally, the programmer provides a definition of how these Maplets and

Reducelets are interconnected and how they are connected to the inputs/outputs.

Figure 5.1 shows the design details. The job has one or more logical inputs. The

Mapper is composed from one or more Maplets, a MR-LEGOS micro-workflow (the dot-

ted arrows in the diagram) describes how inputs are connected to Maplets and how such

Maplets are interconnected. The Reducer is composed from a array of Reducelets option-

ally followed by a set of Maplets; the MR-LEGOS micro-workflow again describes the

connections within the Reducer and to a set of one or more logically grouped outputs.

5.1.1 Composing Maplets and Reducelets

We briefly highlight in this section the main features that enable MR-LEGOS to provide

such refined MapReduce job definition. Figure 5.2 depicts four main composition cases.

(a) One or more Mappers connected in series: This case is illustrated in Figure 5.2(a),

where a set of Maplets are connected in series and the output from one Maplet is fed as in-

put to the next Maplet. This sequence of Maplets is equivalent to a single compound Map-

per with a Map function expressed as mapc(k1, v1) = mapn(mapn−1(...map1(k1, v1))),
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where mapc represents the compound Map function, and map1..n represent the individ-

ual Map functions for each Maplet. This compound Mapper preserves the Map function

associated type presented in Eq. (1.1).

(b) One or more Mappers connected in parallel: This case is illustrated in Fig-

ure 5.2(b). We can see that such an arrangement is also equivalent to a single compound

Mapper if such Mapper has a demultiplexing module at its input and a multiplexing mod-

ule at its output; the demultiplexing module decides which key/value pairs are forwarded

to which Maplet, and the multiplexing module combines the outputs key/value pairs from

the individual Maplets into a single output stream of key/value pairs. The compound Map

function is expressed as mapc(k1, v1) =
∑

i∈S mapi(k1, v1), where S ⊆ N , and N is the

set of all Maplets encompassed by this compound Mapper. This compound Mapper also

preserves the Map function associated type presented in Eq. (1.1).

(c) A Reducer followed by zero or more Mappers connected in series: Such an ar-

rangement is equivalent to a single compound Reducer composed from a single Reducer

and each output key/value pair from such Reducer is piped through a set of Mappers con-

nected in series. This case is depicted in Figure 5.2(c). The compound Reduce function is

expressed as reducec(k1, list(v1)) = mapn(mapn−1(...reduce(k1, list(v1)))). This com-

pound Reducer preserves the Reduce function associated type presented in Eq. (1.2).

(d) One or more Reducers connected in parallel: This arrangement is also equivalent

to a single compound Reducer if such Reducer has a demultiplexing module at its input and

a multiplexing module at its output; the demultiplexing module decides which key/value

pairs are forwarded to which Reducelet, and the multiplexing module combines the outputs

key/value pairs from the individual Reducelets into a single output stream of key/value

pairs. This case is depicted in Figure 5.2(d). The compound Reduce function is expressed

as reduce(k1, list(v1)) =
∑

i∈S reducei(k1, list(v1)), where S ⊆ N , and N is the set

of all Reducelets encompassed by this compound Reducer. This compound Reducer also

preserves the Reduce function associated type presented in Eq. (1.2).
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Figure 5.2: Different primitive combinations for composing Maplets and Reducelets. (a)

A set of Maplets connected in series, (b) A set of Maplets connected in Parallel, (c) A

Reducelet followed by a series of Maplets, and (d) A set of Reducelts connected in parallel.

Figure 5.3: Internal components within a MR-LEGOS job that facilitates translating the

job definition to the conventional MapReduce model.

The MR-LEGOS job model leverages the composition features mentioned above to

provide a rich and refined model for the MapReduce job.

5.1.2 Translating MR-LEGOS Job Definition

This section describes how the refined job model proposed by MR-LEGOS is mapped

to the conventional MapReduce model. We cover a set of main implementation aspects

highlighting the procedure of such mapping.

Figure 5.3 shows the MR-LEGOS main Mapper and Reducer. The figure highlights the

main components inside the Mapper and Reducer. These components enable the refined

job definition provided by MR-LEGOS and are discussed below.

• Inputs: Inputs are grouped into logical units. A MR-LEGOS job can have one or

more input units and the job definition describes how the input units are connected to
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the Maplets within the job. The job definition also allows attaching separate readers

to each input unit. The readers are responsible for splitting the input across multiple

Mapper instances, understanding the input format and providing the steam of input

key/value pairs to each Mapper instance.

• Mapper DEMUX: The MR-LEGOS Mapper has an input demultiplexing module.

This module inspects every input key/value pair, figures out which logical input unit

it belongs to and accordingly forwards the input key/value pair to the correct set of

Maplets (i.e., the ones connected to this logical input unit).

• Mapper ROUTER: Each Maplet within the MR-LEGOS main Mapper has a routing

module attached to its output. The router forwards the output key/value pair to every

connected output Maplet. If the Maplet is connected to a Reducelet, then the output

key/value pair is emitted as the intermediate key/value pair for the main Mapper. MR-

LEGOS also provides a special type of routers called “conditional routers”; where

the output key/value pairs can be selectively forwarded to the connected outputs. A

set of Boolean functions (fi(key, value) → true/false), provided by the user, are

associated with every connected output. The key/value pair is only forwarded to the

output if the associated function is evaluated to true. The conditional routers offer a

way for encoding a relatively more complex job semantics.

• Mapper TAGGER: Each Maplet within the main Mapper also has a tagging module

which tags every output key/value pair. Each Maplet has a unique identifier (within

the MR-LEGOS job) and this identifier is usually chosen as the tag identifier.

• Reducer DEMUX: The demultiplexing module in the main Reducer is responsi-

ble for receiving the stream of intermediate key/value pairs and splitting this stream

across multiple Reducelets defined within the MR-LEGOS main Reducer. The de-

multiplexer uses the tags associated with the key/value pair to determine the appro-
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priate recipient Reducelet. The design details for this demultiplexer are discussed in

more details in Section 5.1.3.

• Reducer ROUTER: Every Reducelet and Maplet within the MR-LEGOS main Re-

ducer has an associated routing module. This module is similar to the one mentioned

above in the “Mapper ROUTER” discussion. Optionally, these routers can be chosen

also to be conditional routers. If the Reducelet/Maplet is connected to an output unit

then the output key/value pairs are emitted as final key/value outputs for the MR-

LEGOS job. The output writer (see the following item) associated with this output

unit is used.

• Reducer TAGGER: This is similar to the tagger discussed above for the main Map-

per case.

• Outputs: Outputs are grouped into logical units. A MR-LEGOS job can have one

or more output units and the job definition describes how they are connected to the

Maplets/Reducelets within the job. The job definition also allows attaching separate

writers to each output unit. These writers are responsible for writing the output

key/value pairs in the appropriate format.

It is important to note that the discussions about the refined model for the Mapper and

Reducer are also valid for the combiner.

5.1.3 Streaming intermediate values

In this section, we describe the design for splitting the stream of intermediate values re-

ceived by the MR-LEGOS main Reducer into multiple streams for each Reducelet. In the

MapReduce programming model, the Reduce function accepts an intermediate key and a

set of values for that key. These intermediate values are supplied via an iterator to allow

handling lists of values that are too large to fit in memory. The presented method extends
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this design by providing a list of iterators, where values can be grouped into independent

queues based on the tag. Multiple Reduce functions can independently iterate over these

queues. The method is not memory bound and is advantageous when supporting multiple

Reduce functions in a single MapReduce job.

We formulate the problem as follows: The Reducer receives an iterator over the set of

values for a specific intermediate key. The requirement is to group these values based on

the tag and stream these grouped values to multiple Reduce functions.

An obvious solution is for the Reducer to group values having the same tag into multi-

ple lists (a list per unique tag), and provides an iterator over each list. The main problem

with this solution is that it is memory bound. If the values doesn’t fit in memory, it will

be required to spill them to disk and then later read them back. This will present an I/O

and performance degradation issue. The presented method addresses this issue and pro-

vides a simple and efficient solution, which is not memory bound and don not require

writing/reading values to/from disk.

Blocking Queue The proposed method uses a blocking queue backed iterator. The

blocking queue is a memory-based FIFO (first-in-first-out) data structure that mainly sup-

ports two methods: add_object(), for adding an object to the end of the queue and

remove_object(), for retrieving and removing the object at the head of the queue.

The queue has a predefined capacity CMAX. The add_object() method blocks if the

queue is at its maximum capacity, while the remove_object() blocks if the queue is

empty.

The architecture shown in Figure 5.4 depicts the details of how the intended func-

tionality is achieved. Assume the MR-LEGOS job defines “n” Reducelets, where each

Reducelet will have its own Reduce function; the architecture uses “n” execution threads

(“receiver” threads); each will encompass a corresponding Reduce function and have an

associated blocking queue iterator. Additionally, the architecture defines a single “sender”

thread, which iterates through the received values one by one, and inspects the associ-
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Figure 5.4: Detailed design of the Reducer DEMUX, where the stream of intermediate

values is split into multiple streams, each corresponds to a Reducelet defined within the

MR-LEGOS job.

ated tag and accordingly adds this value to the corresponding blocking queue using the

add_object() operation. Each Reduce function is passed its corresponding blocking

queue iterator to get access to its associated stream of values.

The architecture uses the tag to decide the forwarding criterion. In Figure 5.4, the

notation V alues(k2) refers to the whole stream of intermediate values associated with a

specific intermediate key k2, while the notation Values (k2, Rn) refers to the stream split

associated with Reducelet n. The Reduce function for an operation is called by the cor-

responding receiver thread and passed the blocking queue iterator, and hence can iterate

through its grouped values. The concurrent and blocking nature of the design guarantees

the synchronized functionality of Multiple Reduce functions.

The method is not memory bound since the additional used memory is a function of

the number and maximum capacity of the used blocking queues. So the maximum queue

size can be tuned to a value that avoids raising any memory or performance problems. The

method also preserves the same iterator interface provided by the conventional MapReduce

model, so it requires minimal modifications to migrate any legacy definitions to the MR-

LEGOS design.
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5.2 MR-LEGOS Data Elements

In this section, we will focus on discussing MR-LEGOS Data Elements (MR-LEGOS-

DE), and how the MR-LEGOS refined model was used to build a data processing layer on

top of MapReduce. MR-LEGOS-DE realizes the fact that there are sets of common logical

components that usually exist within a single data processing MapReduce job and hence ex-

poses an explicit model for structuring MapReduce jobs into standard reusable components

that are meshed together to construct the job definition. The proposed approach maintains

the ability of the user to write the conventional low-level MapReduce code, and at the same

time, the refined structure provides a way of maintaining and reusing standard data pro-

cessing components. The building units of the refined model remain the conventional Map

and Reduce functions. However, they are grouped into logical components within the job

definition. The presented approach offers a high-level, modular and easy way for defin-

ing complex and efficient MapReduce data processing jobs; it also allows the definition of

multiple concurrent Mappers and Reducers within the same job, and this is advantageous

from the perspective of disk access costs. In some scenarios it is required to perform mul-

tiple operations on the same data set. For example, having the relational table (bonusID,

emp, dept, amount), it may be required to calculate the average bonus amount for each

employee, and additionally, the total amount of bonuses for each department. Using the

conventional MapReduce model, constructing two separate MapReduce jobs can perform

these two operations, each reading the same data set. The use of multiple MapReduce jobs

is apparently expensive, especially with large data sets. Using the proposed refined model,

users can define multiple operations inside a single MapReduce job, and hence providing

a convenient way of addressing such problems. The proposed framework makes use of the

uniform interface of the Map and Reduce functions. This interface provides an intuitive

way of connecting Mappers and Reducers. This is analogous to the knobs configuration in

the LEGO blocks. MR-LEGOS leverages these features and provides a generic job design

that is capable of defining complex micro-workflows inside a single MapReduce job.
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5.2.1 MR-LEGOS-DE Job Definition

The objective of MR-LEGOS-DE is to provide a model suitable for defining data process-

ing jobs within an ETL [81, 50] workflow. In order to come up with a convenient design,

it is important to understand the context where the ETL job exists. An ETL workflow is

constructed from a set of jobs; a job within the workflow may receive inputs from one or

more preceding jobs, and may send its results to one or more following jobs. Within a

single job, it is expected to find a central operation (e.g. joining two data-sets) in addition

to a series of input or output specific transformations (e.g. filtering records). This logical

organization is common to several state-of-the-art ETL tools (for example, see [39]).

The proposed approach defines a logical organization for the computations done within

a MapReduce job; this organization enables the definition of standard processing compo-

nents that can be easily plugged, reused and maintained. This feature can be viewed as

defining a “micro” workflow inside the MapReduce job, where the user can mesh standard

components or provide her own customized components. The user specifies the processing

components and the connections between them and the framework takes care of data rout-

ing and computation coordination within these components. These processing components

are standard Mappers and Reducers, which makes it easy to mesh components and reuse

legacy code. This is analogous with how LEGO bricks can be used to build complex and

large structures. Each individual brick is a very simple structure but because of the ability

of connecting them in different configurations, it is easy to construct complex structures

with various shapes. The MR-LEGOS refined design described in Section 5.1 offers an

intuitive way to model such data processing problems.

5.3 Positioning MR-LEGOS

A data analyst is required to perform a data processing task on MapReduce. The task

involve two data sets, shown in Figure 5.5, an employee table listing the id, name, deptId
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Figure 5.5: An example employees table, showing the id, name, department Id and salary

for each employee. An example vehicles tables, showing the employee Id and the vehicle

make for each employee.

Figure 5.6: Two example SQL queries. A join query and an aggregation query using the

tables shown in Figure 5.5.

and salary for a company’s employees, and a vehicles table listing the employee id (eId)

and the vehicle make (vMake) for the company’s vehicles. It is required to evaluate the

equivalent of the two SQL queries in Figure 5.6.

The data analyst has multiple alternatives:

Use a high-level language like Pig-Latin or Hive-SQL: Using these frameworks is

highly convenient since the user describes the problem in a concise language and the frame-

work takes care of translating the problem definition into Map and Reduce functions. In

some cases, the user will get the queries executed and will be satisfied with the results and

the performance, but what happens if the performance is not satisfactory or the results are

not as expected. The user will start searching for the reasons and may ask questions like

the following: What about using a different join strategy? May be the data is skewed, can I

provide my own partitioner? Is the framework executing my queries as a single MapReduce

job or multiple ones? How can I enforce using a single job?, etc. Such high-level languages

generally don’t provide this low-level control. Accordingly, one main issue will be the ex-

pressive power of such languages and how the constructs of the language are translated into

MapReduce. If the user is facing the aforementioned problems, then a logical choice will

be looking into other low-level alternatives (e.g. writing custom MapReduce code).
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Write MapReduce code: By writing MapReduce code, the user is getting the maxi-

mum power and flexibility from the MapReduce programming model. The issue will be

organizing, maintaining and reusing this code. The user may need to execute a slightly

different query few days later, or an additional query will be added to the same job. An

immediate solution is to write standard MapReduce jobs that perform well-defined opera-

tions. So assume the user starts to build a data processing library. For example, the user

now has a job that performs hash join efficiently, another one for multi-way join or dif-

ferent aggregations; he also has simple jobs for filtering columns/records, etc. The user

defined this library of jobs as standard Mappers and Reducers. However, for practical and

performance reasons it may be needed to combine these operations inside one MapReduce

job during execution. So a framework is needed that offer the capability of connecting

these building blocks to construct more complex jobs. Here come the motivations of the

proposed MR-LEGOS model.

Use MR-LEGOS: This alternative addresses the drawbacks associated with developing

and maintaining custom MapReduce code. It should be noted that the proposed framework

preserves the full MapReduce power and flexibility. For example, if the user defines an

MR-LEGOS job that merely contains a single Maplet and Reducelet, then this is exactly

equivalent to writing a single conventional MapReduce job. This is analogous to using

LEGO, the system provides the brick and knob configurations and gives you several shapes

of bricks, and the user may decide to build complex structures composed of hundreds of

bricks or simple structures with a few bricks.

5.3.1 Simulation Example

To better understand the proposed MR-LEGOS model, we follow the example presented

in the previous section and go through the processing steps. We want to construct a MR-

LEGOS job that performs the equivalent of the aforementioned SQL queries. Figure 5.7

shows the combined query tree for the above mentioned SQL queries. The nodes in the
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Figure 5.7: Combined query tree for the example SQL queries shown in Figure 5.6.

tree are tagged with the corresponding Maplets/Reducelets in Figure 5.8 to easily correlate

the query semantics with MR-LEGOS job definition.

The diagram shown in Figure 5.8 depicts the definition for a MR-LEGOS job that con-

currently performs these two queries. The diagram shows seven Maplets; M1 is connected

to the vehicles table, while M2 is connected to the employees table. Maplet M2 is a select

Maplet to filter records (i.e., where salary > 15) followed by a project Maplet for pro-

jecting only the required columns. Maplet M1 is a join Maplet while M4 is an aggregate

Maplet. The output from the project Maplet is connected to both the join and aggregate

Maplets. The MR-LEGOS-DE library offers a toolbox of Maplets and Reducelets that can

be used to specify different data processing tasks or even different techniques for the same

operation (e.g. different join strategies). On the Reduce side, we have join and aggregate

Reducelets coupled with their counter-parts on the Map side. The join Reducelet, R1,

is connected to a project Maplet, M3, to get rid of the extra join key column, while the

aggregate Reducelet, R2, is connected to two Maplets connected in series, M6, imple-

menting the SQL having semantics followed by a final project Maplet, M7. The MR-

LEGOS framework currently supports reading and writing XML and JSON specification

of the job definition in addition to a relational model specification where Hibernate [70] is

used to Map the job specification to its relational model.
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Figure 5.8: Single MR-LEGOS job definition for the two SQL queries shown in Figure 5.6.

Figure 5.9: Map-side of the simulation, where the employees table was divided into two

splits and two Map tasks are processing these splits, while the vehicles table is processed

by the third Map task.

With the aforementioned MR-LEGOS job definition, let us go through the simulation

run of the job. Figure 5.9 depicts the Map-side execution details. As the Map operation

is parallelized, the input file set is first split to several pieces called “file splits”. If an

individual file is so large that it will affect seek time it will be split to several splits [64].

For the sake of the running example, we assume that the MapReduce framework decided

to create three file splits and hence three Mapper instances. The employee table was split

into two file splits, while the vehicles table remained as a single file split; the contents of

these splits are shown in the left-hand side of Figure 5.9.

The Mapper DEMUX (described in Section 5.1.2) identifies the file split the Mapper

instance is reading from, and hence identifies the associated logical input table. Mapper

instances Mapper1 and Mapper2 are reading file splits associated with the employee table

and hence all records are forwarded to the M2 Maplet, while Mapper instance Mapper3
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Figure 5.10: Reduce-side of the simulation, where six Reduce tasks are processing the

grouped intermediate values produced by the Map tasks shown in Figure 5.9.

is reading a vehicles table file split and accordingly all records are passed to M1. This is

the reason M2, M3 and M4 are shown as inactive in Mapper3. The figure identifies inac-

tive components by the light gray color. Following the details described in Section 5.1.2,

the employees table’s records are tagged and then forwarded to both the join and the

aggregate Maplets and Reducelets. The records of the vehicles table are tagged by M1

tag and only forwarded to the join Reducelet. The aggregate Maplet is shown inactive

in M3. The join and aggregate Maplets, respectively, publish the join and aggregate

columns for each received record as the intermediate key and the whole record as the in-

termediate value. The intermediate outputs are shown in the right-hand side of Figure 5.9;

the intermediate key and the tag are respectively shown to the left of each record.

Figure 5.10 depicts the Reduce-side execution details. The MapReduce library takes

care of partitioning intermediate outputs and grouping all values having the same interme-

diate key. The grouped values are shown to the left side of Figure 5.10. Note that, values

for different intermediate keys can end-up in the same Reducer (based on the partitioner

in the Map-side), and in such case the Reduce function is called as many times as there

are distinct intermediate keys. The Reduce instances (Reducer1..Reducer6) shown in the

figure represent distinct calls to the Reduce function (either in the same Reducer or sep-

arate Reducers). The Reducer DEMUX (described in Section 5.1.2) inspects the tag for
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each received record and forwards the record to the correct Reducelet, where the Reduce-

side of the operation is executed. In the join Reducelet, the values are grouped based on

the input unit tag and then a cross product between the two groups is evaluated, while in

the aggregate Reducelet, the aggregate functions (AV G and MIN) are calculated for the

group. It can be seen that both operations are concurrently running on different Reducers.

Finally, the output from each Reducelet is forwarded to the connected Maplets. The frame-

work uses multiple output collectors to realize the different logical output units. So in our

example, we have two output collectors, one for each logical output unit. The Reducer

ROUTER takes care of forwarding the output to the corresponding output collector. The

framework takes care of generating as many output collectors as the number of defined

logical output units inside the MR-LEGOS job.

In the above example, we assumed that the intermediate keys for each operation don’t

overlap and hence for each Reduce instance we had only one active Reducelet. If the inter-

mediate keys overlap, we may have multiple active Reducelets in the same main Reducer

instance. For example, assume that the two keys e1 and d1 were equal, and accordingly the

values for them were grouped as a single stream of intermediate values for the main Reduce

instance (i.e. Reducer1 and Reducer3 were merged into a single Reduce instance). In this

case, it is required to devise a mechanism to resolve this issue since it is required to have

a separate stream on intermediate values for each defined Reducelet. The partitioner in

the Map-side can be designed to control this issue by preventing values having equal keys

and equal Reducelets tags to be inserted into the same partition (this requires enforcing the

number of Reducers to be at least equal to the number of defined operations inside the job).

A more general solution is to split the single stream of intermediate values into two steams

(one for each Reducelet), this splitting mechanism was described earlier in Section 5.1.3.
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5.4 Experimental Results

We present a number of experiments conducted to assess the performance and scalability of

the proposed model. Section 5.4.1 discusses the experiments carried on a single compute

node, while the results for multi-node cluster are discussed in Section 5.4.2.

5.4.1 Single-Node Cluster

The first set of experiments were carried on a single compute node, the objective was to in-

vestigate the basic characteristics of the model, in isolation from communication overheads

that exist in a multi-node cluster. The experiments were carried on a MAC OS X 10.5, with

2.2 GHz Intel Core 2 Duo processor, 4GB RAM and 120GB HD, running Hadoop 0.20.1.

The steps for setting up Hadoop MapReduce on a single-node can be found at [125].

As previously mentioned, the MR-LEGOS model degenerates to the conventional MapRe-

duce model, if the user defines a MR-LEGOS job that is merely composed of a single

Maplet and Reducelet. Since MR-LEGOS is designed as a generic model with the presence

of the standard components (e.g. demultiplexing, routing and tagging modules), additional

cost is expected when using MR-LEGOS in such degenerate case. The first experiment

in this section assesses this added overhead. We used a set of data processing examples

with data of varying sizes and measured the execution time when the Maplet and Reducelet

were part of a MR-LEGOS job versus the case of using these Maplet and Reducelet as

the main Mapper and Reducer in a conventional MapReduce job. Figure 5.11 shows the

results, the x-axis shows the input data sizes as multiples of the initial size (i.e. at point 1),

while the execution time is shown on the y-axis. The results show that the execution time

for MR-LEGOS was on average 2− 3% more than the execution time for the same job us-

ing the conventional model. The input data sizes in this experiment varied from 244KB to

3,416KB, a single Mapper and Reducer instance were used. Such overhead was generally

acceptable, given the advantages of using MR-LEGOS.



www.manaraa.com

142

Figure 5.11: Execution time as a function of input data sizes for both the MR-LEGOS and

the conventional MR cases in the single-node cluster case.

To investigate the composition scalability of the proposed model, we evaluated the be-

havior of the proposed MR-LEGOS model as a function of varying input data sizes and

variable number of Reducelets packed within the MR-LEGOS job. The charts in Fig-

ure 5.12 illustrate the results for this experiment. The number of concurrently running

Reducelets (i.e. the number of threads within a main Reduce task) is shown on the x-axis.

The y-axis represents the relative execution time τn = tn
n×t1

, where tn is the execution time

for an n-Reducelets job, and t1 is the execution time for a single Reducelet job for the

same data size. The charts (1x .. 5x) represent results for varying input data sizes (the

input data size in 2x is double the one in 1x, etc.). The input data sizes varied from 85KB

to 425KB. Inspecting the results for 1x, it can be seen that τ decreases as the number of

threads slightly increase but then increases as the number of threads further increase. This

increase is associated with the fact that at some point the increased number of threads be-

comes an overhead for their main Reduce task process. This effect becomes significant as

the data sizes increase (e.g. the chart for the 5x case). To practically avoid this limitation,

the Map partitioner can be designed to limit the number of concurrently running Reducelets

within a single Reduce instance.
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Figure 5.12: Relative execution time as a function of no. Reducelets within a Reduce task

for different data sizes in the single-node cluster case.

5.4.2 Multi-Node Cluster

In the second set of experiments, we investigated the characteristics of MR-LEGOS model

on a shared Multi-Node Hadoop 0.20.1 cluster. The cluster has 4000 nodes, each node

has a 2x Quad Core 1.86GHz Intel Xeon processor, 16GB RAM, and 4x 750GB HD. For

detailed steps on setting up a Multi-Node Hadoop cluster, the interested reader can refer to

[98].

Multiple users/jobs can concurrently use a shared Hadoop cluster. Accordingly, jobs

can be queued for a period of time before execution, the queuing time depends on the job

priority and the load on the cluster (i.e., the total number of running tasks in the cluster).

Also, the job runtime varies based on the cluster load, and based on the location where

the Map/Reduce tasks ran relative to their input data locations. Hadoop generally tries

to run the tasks as close to their input data as possible, however, there is no guarantees,

as locations can vary based on nodes availability. To filter such noise, all queueing times

were eliminated from the reported results. Also, we ran each job for at least three times (at

different times of the day) and used the median results (to eliminate noisy outliers).

The first experiment investigated the runtime of MR-LEGOS jobs compared to their

equivalent MR jobs to assess any runtime overheads on a Multi-Node cluster. The results

are shown in Figure 5.13, the x-axis shows the input data sizes as multiples of the initial
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Figure 5.13: Execution time as a function of input data sizes for both the MR-LEGOS and

the conventional MR cases in the multi-node cluster case.

data size, while the y-axis shows the execution time (in seconds). The input data sizes

varied from 60MB (at point 1) to 600MB (at point 10). For each input data size, both

the MR-LEGOS job and its equivalent MR job were started at the same time, to have

them share a common cluster status during execution. For all jobs in this experiment, we

used 10 Map tasks and 50 Reduce tasks. It can be noticed that as the size of the input

data increased, the MR-LEGOS overhead becomes negligible relative to the job execution

time. We have repeated the experiments for different data sizes and job configurations, the

overhead varied between 1% and 3% on average. The communication overheads in the

multi-node cluster were common for both the MR-LEGOS and conventional MR cases,

hence the results of this multi-node experiment were aligned with the single-node case (see

Figure 5.11). However, the multi-node experiment gave more insights on the fact that the

overhead becomes negligible for relatively larger jobs.

One of the key elements of the MR-LEGOS model is the ability of composing Maplets

and Reducelets within a single Map or Reduce task. In the second experiment, the objec-

tive was to explore the limits in terms of scalability in composing these elements within

a single task. In contrast with the experiment in Section 5.4.1, the focus here was to in-

vestigate the multi-node case to see if the communication overheads may expose other

characteristics. We also focused on compositions that result in multi-threaded jobs as

opposed to single-threaded compositions (i.e., only connecting elements in series), since
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Figure 5.14: Relative execution time as a function of no. Reducelets within a Reduce task

for different data sizes in the multi-node cluster case.

multi-threaded compositions are more expensive. The results shown in Figure 5.14 used

an input data of varying sizes 60, 120 and 180MB corresponding to the charts labeled 1x,

2x and 3x, respectively. The intermediate data sizes ranged from 60MB to 2.7GB, each

job used 10 Map tasks and 50 Reduce tasks. The x-axis shows the number of Reducelets

within a single Reduce task, we varied this number from 1 to 15 Reducelets. This range

was practically sufficient, as the maximum number of Reducelets within a Reduce task was

always less than 5 in all production scenarios we have seen. The y-axis shows the relative

execution time τ (first introduced in Section 5.4.1). For a job with n Reducelets, the rela-

tive execution time is the job execution time divided by the sum of execution times for n

equivalent jobs (each having a single Reducelet). As the number of Reducelets increased,

the execution time also increased, while the relative execution time (τ ) decreased, however,

the rate of such decrease dropped as the number of Reducelets increased. Ideally we want τ

to be smaller than 1 as this means that packing the job with multiple Reducelets had a better

runtime than running each Reducelet in a separate job. Compared to the results observed

in the single-node experiment (Figure 5.12), the multi-node experiment always exhibited a

τ value smaller than 1 for the whole range of Reducelets. This behavior can be attributed

to the fact that the node configuration in the multi-node cluster, in terms of processing

power, main memory, etc., comfortably handled the increased number of threads without
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exhibiting any negative overheads as observed in the single-node case (See the 5x-series in

Figure 5.12).

The drop in the τ decrease rate, as the number of Reducelets increased, in both the

single-node and multi-node cases, can be also attributed to Amdahl’s Law [14, 71], this

law is concerned with the speedup achievable from an improvement to a computation that

affects a proportion p of that computation where the improvement has a speedup of n.

Amdahl’s law states that the overall speedup of applying the improvement will be:

Speedup(p, n) =
1

(1− p) + p

n

(5.1)

In our case, p represents the actual data processing done inside the Reducelet, while

1−p is the extra sequential overhead done in the encompassing Reducer (i.e., multiplexing,

routing and tagging operations), in addition to the multi-threading overhead. The results in

the multi-node case also show an increased rate of fluctuations in the jobs’ runtime (espe-

cially when #Reducelets > 10), this behavior can be attributed to both the communication

overheads in the cluster and the increased number of threads.
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Chapter 6

Conclusions and Future Directions

6.1 Conclusions

In this thesis, we studied the problems of data management, integration and processing

in grid/cloud environments, with special emphasis on bioinformatics applications. The

broader context of designing a services oriented architecture (SOA) for data management

and integration was studied, identifying the main components/services for realizing this

architecture.

Researchers in bioinformatics were excited about the successful mapping of the human

genome. These large amounts of genetic data represents a powerful tool that could be used

to put an eventual end to many diseases. But integrating the data so that researchers could

access and analyze it quickly had always been a challenge. The BioFederator is a web

services-based data federation architecture for bioinformatics applications. The system

helps researchers manage and integrate data efficiently in a distributed/cloud computing

environment and makes it easy to gain quick access to the critical data needed for analytical

purposes. Based on collaborations with bioinformatics researchers, several domain-specific

data federation challenges and needs were identified. The BioFederator addresses such

challenges and provides an architecture that incorporates a series of utility services. These

147
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address issues like automatic workflow composition, domain semantics, and the distributed

nature of the data. It also incorporates a series of data-oriented services that facilitate

the actual integration of data. The proposed design, services, and usage scenarios were

discussed in detail [115, 19].

We paid special attention to a set of important applications in the bioinformatics do-

main. For the first time, we presented a whole genome prediction of nucleosome exclusion

regions for the human genome. The resulting annotation was studied and correlated with

tissue specificity, gene density and other important gene regulation features [80, 116]. Also

the output results were made available to the scientific community as part of the Univer-

sity of California at Santa Cruz (UCSC) Genome Browser custom data tracks. The UCSC

Genome Browser is internationally recognized as one of the most important bioinformatics

data repositories.

Within the BioFederator broader context, we studied also the problem of combining

several heterogeneous data representations into a unified non-redundant representation, this

is known as the schema integration problem. Schema integration is the problem of creating

a unified target schema based on a set of existing source schemas and based on a set of

correspondences that are the result of matching the source schemas. Previous methods

for schema integration rely on the exploration, implicit or explicit, of the multiple design

choices that are possible for the integrated schema. Such exploration relies heavily on user

interaction; thus, it is time consuming and labor intensive. Furthermore, previous methods

have ignored the additional information that typically results from the schema matching

process, that is, the weights and in some cases the directions that are associated with the

correspondences.

In this thesis, we proposed a more automatic approach to schema integration that is

based on the use of directed and weighted correspondences between the concepts that ap-

pear in the source schemas. We designed a novel similarity measure used to quantify the

distance between schema concepts in the schema integration problem. This similarity mea-
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sure has significant importance in metadata management in distributed computing systems

as it facilitates the process of federating data from multiple autonomous data sources and

generating a unified non-redundant representation of the data. The new measure offers an

enhanced set of integration decisions as subsumption in addition to merge decisions can

be discovered. A key component of our approach is a top-k ranking algorithm for the

automatic generation of the best candidate schemas. The algorithm gives more weight to

schemas that combine the concepts with higher similarity or coverage. Thus, the algo-

rithm makes certain decisions that otherwise would likely be taken by a human expert.

The algorithm constitutes an important advancement compared to previous algorithms as

it runs in polynomial time and has good performance in practice. The proposed methods

and algorithms were compared to the state of the art approaches, the comparisons relied on

complexity analysis and performance evaluation [114].

We also studies data processing models on grid environment, we highlighted several is-

sues in the existing MapReduce abstraction approaches and alternatively proposed a novel

refined MapReduce model that addresses the maintainability and reusability issues, with-

out sacrificing the low-level controllability offered by directly writing MapReduce code.

We presented the details and our experiences in designing and building MR-LEGOS; an

explicit model for composing MapReduce constructs from simpler components, namely,

“Maplets”, “Reducelets” and optionally “Combinelets”. MR-LEGOS offers an easy way

of re-using and maintaining standard data processing components, in addition to the ease

of plugging custom components. The refined model can be easily tested, validated and de-

bugged, since it is composed of standard and relatively simpler components. Compared to

other high-level abstractions, MR-LEGOS offers a powerful abstraction layer. These high-

level tools translate user queries into MapReduce jobs, but the user doesn’t have low-level

control over the details of these constructed jobs. Additionally, each of these high-level

tools is limited by the expressive power of its query language and how these queries are

mapped to MapReduce jobs. We showed that the refined model is suitable for defining
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complex ETL grid jobs, and illustrated the design details through example simulations and

performance experiments [117].

6.2 Future Directions

One important future direction is to apply and extend schema integration techniques such as

the ones developed in this thesis to situations where the number of schemas to be integrated

is much larger (e.g., in the hundreds) and where schemas rapidly evolve and change. In

particular, we would like to be able to automate the problem of generating unified schemas

when extracting and integrating large data sets from the web (e.g., from DBPedia, Freebase,

etc). Even when the data has structure, it is often the case that the schema underlying an

entity of interest varies, sometimes significantly, from one individual object to another, and

coming up with a unified schema will pose challenges.

From an applications perspective, an important future direction is applying the proposed

data integration methods and algorithms to investigate other bioinformatics problems. For

example, pharmacogenomics is a branch of bioinformatics dealing with the influence of

genetic variation on drug response in patients. Approaches investigating such influences

promise the advent of “personalized medicine”, in which drugs and drug combinations are

optimized for each individual’s unique genetic makeup. To make “personalized medicine”

decisions, information from multiple heterogeneous data sources needs to be incorporated;

for example OMIM, dbSNP and dbGaP from NCBI, Haplotype data from the HapMap

project, Human Gene Mutation and TRANSFAC databases from BioBase, in addition to

PHARMKGB.

In this thesis, we focused on using MR-LEGOS in grid data processing applications, so

one important future direction is to apply the MR-LEGOS model in other application do-

mains (e.g. machine learning). Also, investigating the possible extension of MR-LEGOS

micro-workflow specifications to include advanced features like loop-backs can be an inter-
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esting future direction. Integrating MR-LEGOS with the other high-level abstraction layers

can be also important.
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